These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37640908)

  • 41. Overview of DNA origami for molecular self-assembly.
    Saaem I; LaBean TH
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):150-62. PubMed ID: 23335504
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity.
    Prinz J; Heck C; Ellerik L; Merk V; Bald I
    Nanoscale; 2016 Mar; 8(10):5612-20. PubMed ID: 26892770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Customized Self-Assembled Gold Nanoparticle-DNA Origami Composite Templates for Shape-Directed Growth of Plasmonic Structures.
    Sun M; Xie M; Jiang J; Qi Z; Wang L; Chao J
    Nano Lett; 2024 Jun; 24(22):6480-6487. PubMed ID: 38771966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Programmed nanopatterning of organic/inorganic nanoparticles using nanometer-scale wells embedded in a DNA origami scaffold.
    Kuzuya A; Koshi N; Kimura M; Numajiri K; Yamazaki T; Ohnishi T; Okada F; Komiyama M
    Small; 2010 Dec; 6(23):2664-7. PubMed ID: 21072871
    [No Abstract]   [Full Text] [Related]  

  • 45. Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces.
    Teshome B; Facsko S; Keller A
    Nanoscale; 2014; 6(3):1790-6. PubMed ID: 24352681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami.
    Chikkaraddy R; Turek VA; Kongsuwan N; Benz F; Carnegie C; van de Goor T; de Nijs B; Demetriadou A; Hess O; Keyser UF; Baumberg JJ
    Nano Lett; 2018 Jan; 18(1):405-411. PubMed ID: 29166033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Versatile DNA Origami Nanostructures in Simplified and Modular Designing Framework.
    Cui Y; Chen R; Kai M; Wang Y; Mi Y; Wei B
    ACS Nano; 2017 Aug; 11(8):8199-8206. PubMed ID: 28654269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toward larger DNA origami.
    Marchi AN; Saaem I; Vogen BN; Brown S; LaBean TH
    Nano Lett; 2014 Oct; 14(10):5740-7. PubMed ID: 25179827
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
    Song J; Zhang Z; Zhang S; Liu L; Li Q; Xie E; Gothelf KV; Besenbacher F; Dong M
    Small; 2013 Sep; 9(17):2954-9. PubMed ID: 23436715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hierarchically assembled DNA origami tubules with reconfigurable chirality.
    Chen H; Cha TG; Pan J; Choi JH
    Nanotechnology; 2013 Nov; 24(43):435601. PubMed ID: 24076521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.
    Yonamine Y; Cervantes-Salguero K; Minami K; Kawamata I; Nakanishi W; Hill JP; Murata S; Ariga K
    Phys Chem Chem Phys; 2016 May; 18(18):12576-81. PubMed ID: 27091668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Building plasmonic nanostructures with DNA.
    Tan SJ; Campolongo MJ; Luo D; Cheng W
    Nat Nanotechnol; 2011 May; 6(5):268-76. PubMed ID: 21499251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid Silicification of a DNA Origami with Shape Fidelity.
    Wang H; Li Z; Liu X; Jia S; Gao Y; Li M
    ACS Appl Bio Mater; 2024 Apr; 7(4):2511-2518. PubMed ID: 38512069
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Salt-induced conformational switching of a flat rectangular DNA origami structure.
    Hübner K; Raab M; Bohlen J; Bauer J; Tinnefeld P
    Nanoscale; 2022 Jun; 14(21):7898-7905. PubMed ID: 35587049
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bench-Top Fabrication of Single-Molecule Nanoarrays by DNA Origami Placement.
    Shetty RM; Brady SR; Rothemund PWK; Hariadi RF; Gopinath A
    ACS Nano; 2021 Jul; 15(7):11441-11450. PubMed ID: 34228915
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gold-Nanoparticle-Mediated Assembly of High-Order DNA Nano-Architectures.
    Yin J; Xie M; Wang J; Cui M; Zhu D; Su S; Fan C; Chao J; Li Q; Wang L
    Small; 2022 Jun; 18(22):e2200824. PubMed ID: 35523735
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complex Metal Nanostructures with Programmable Shapes from Simple DNA Building Blocks.
    Ye J; Aftenieva O; Bayrak T; Jain A; König TAF; Erbe A; Seidel R
    Adv Mater; 2021 Jul; 33(29):e2100381. PubMed ID: 34085729
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays.
    Hager R; Burns JR; Grydlik MJ; Halilovic A; Haselgrübler T; Schäffler F; Howorka S
    Small; 2016 Jun; 12(21):2877-84. PubMed ID: 27062557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems.
    Ijäs H; Nummelin S; Shen B; Kostiainen MA; Linko V
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30037005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.
    Thacker VV; Herrmann LO; Sigle DO; Zhang T; Liedl T; Baumberg JJ; Keyser UF
    Nat Commun; 2014 Mar; 5():3448. PubMed ID: 24622339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.