These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37641181)

  • 1. Toehold switch plus signal amplification enables rapid detection.
    Morey K; Thomas-Fenderson T; Watson A; Sebesta J; Peebles C; Gentry-Weeks C
    Biotechnol J; 2023 Dec; 18(12):e2200607. PubMed ID: 37641181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards detection of SARS-CoV-2 RNA in human saliva: A paper-based cell-free toehold switch biosensor with a visual bioluminescent output.
    Hunt JP; Zhao EL; Free TJ; Soltani M; Warr CA; Benedict AB; Takahashi MK; Griffitts JS; Pitt WG; Bundy BC
    N Biotechnol; 2022 Jan; 66():53-60. PubMed ID: 34555549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system.
    Cao M; Sun Q; Zhang X; Ma Y; Wang J
    Biosens Bioelectron; 2021 Jun; 182():113173. PubMed ID: 33773383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal Amplification for Cell-Free Biosensors, an Analog-to-Digital Converter.
    Franco RAL; Brenner G; Zocca VFB; de Paiva GB; Lima RN; Rech EL; Amaral DT; Lins MRCR; Pedrolli DB
    ACS Synth Biol; 2023 Oct; 12(10):2819-2826. PubMed ID: 37792474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Coronaviruses Using RNA Toehold Switch Sensors.
    Park S; Lee JW
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33578973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches.
    Hwang Y; Kim SG; Jang S; Kim J; Jung GY
    J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Mail-in-Sensors for SARS-CoV-2 Detection: Interfacing Gel Switch Resonators with Cell-Free Toehold Switches.
    Carr AR; Dopp JL; Wu K; Sadat Mousavi P; Jo YR; McNeley CE; Lynch ZT; Pardee K; Green AA; Reuel NF
    ACS Sens; 2022 Mar; 7(3):806-815. PubMed ID: 35254055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short Activators and Repressors of RNA Toehold Switches.
    McSweeney MA; Zhang Y; Styczynski MP
    ACS Synth Biol; 2023 Mar; 12(3):681-688. PubMed ID: 36802167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a cell-free toehold switch for hepatitis A virus type I on-site detection.
    Kang X; Zhao C; Chen S; Zhang X; Xue B; Li C; Wang S; Yang X; Xia Z; Xu Y; Huang Y; Qiu Z; Li C; Wang J; Pang J; Shen Z
    Anal Methods; 2023 Nov; 15(43):5813-5822. PubMed ID: 37870419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered RNA biosensors enable ultrasensitive SARS-CoV-2 detection in a simple color and luminescence assay.
    Chakravarthy A; Nandakumar A; George G; Ranganathan S; Umashankar S; Shettigar N; Palakodeti D; Gulyani A; Ramesh A
    Life Sci Alliance; 2021 Dec; 4(12):. PubMed ID: 34593555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous and Universal Detection of Various Targets with a Dual-Step Transduced Toehold Switch Sensor.
    Li H; Tang Y; Li B
    Chembiochem; 2020 May; 21(10):1418-1422. PubMed ID: 31913537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developments of Riboswitches and Toehold Switches for Molecular Detection-Biosensing and Molecular Diagnostics.
    Chau THT; Mai DHA; Pham DN; Le HTQ; Lee EY
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32366036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive web tool for toehold switch design.
    To AC; Chu DH; Wang AR; Li FC; Chiu AW; Gao DY; Choi CHJ; Kong SK; Chan TF; Chan KM; Yip KY
    Bioinformatics; 2018 Aug; 34(16):2862-2864. PubMed ID: 29648573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PAM-free cascaded strand displacement coupled with CRISPR-Cas12a for amplified electrochemical detection of SARS-CoV-2 RNA.
    Shi K; Yi Z; Han Y; Chen J; Hu Y; Cheng Y; Liu S; Wang W; Song J
    Anal Biochem; 2023 Mar; 664():115046. PubMed ID: 36641031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating Responses of Toehold Switches by an Inhibitory Hairpin.
    Kim SJ; Leong M; Amrofell MB; Lee YJ; Moon TS
    ACS Synth Biol; 2019 Mar; 8(3):601-605. PubMed ID: 30721039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Toehold Switches; a foothold for Synthetic Biology".
    Yarra SS; Ashok G; Mohan U
    Biotechnol Bioeng; 2023 Apr; 120(4):932-952. PubMed ID: 36527224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of cell-free platform-based toehold switch system for detection of IP-10 mRNA, an indicator for acute kidney allograft rejection diagnosis.
    Chau THT; Lee EY
    Clin Chim Acta; 2020 Nov; 510():619-624. PubMed ID: 32860784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of
    Heo T; Kang H; Choi S; Kim J
    Life (Basel); 2021 Nov; 11(11):. PubMed ID: 34833155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design to Implementation Study for Development and Patient Validation of Paper-Based Toehold Switch Diagnostics.
    Jaenes K; Ribeiro da Silva SJ; Vigar JRJ; Wu K; Norouzi M; Bayat P; Karlikow M; Cicek S; Guo Y; Green AA; Pena L; Pardee K
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35781278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical biosensor for nucleic acid amplification-free and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA via CRISPR/Cas13a trans-cleavage reaction.
    Heo W; Lee K; Park S; Hyun KA; Jung HI
    Biosens Bioelectron; 2022 Apr; 201():113960. PubMed ID: 35016109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.