These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37641876)

  • 1. Structural-guided design to improve the catalytic performance of aldo-keto reductase KdAKR.
    Dai C; Cao HX; Tian JX; Gao YC; Liu HT; Xu SY; Wang YJ; Zheng YG
    Biotechnol Bioeng; 2023 Dec; 120(12):3543-3556. PubMed ID: 37641876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-aided design to enhance the stability of aldo-keto reductase KdAKR.
    Dai C; Tian JX; Chen YF; Ni YH; Cui L; Cao HX; Song LL; Xu SY; Wang YJ; Zheng YG
    Biotechnol J; 2024 Mar; 19(3):e2300637. PubMed ID: 38472092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-evolution of activity and thermostability of an aldo-keto reductase KmAKR for asymmetric synthesis of statin precursor dichiral diols.
    Qiu S; Cheng F; Jin LJ; Chen Y; Li SF; Wang YJ; Zheng YG
    Bioorg Chem; 2020 Oct; 103():104228. PubMed ID: 32891863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semirational engineering of an aldo-keto reductase KmAKR for overcoming trade-offs between catalytic activity and thermostability.
    Li SF; Xie JY; Qiu S; Xu SY; Cheng F; Wang YJ; Zheng YG
    Biotechnol Bioeng; 2021 Nov; 118(11):4441-4452. PubMed ID: 34374988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-based screening for engineered aldo-keto reductase KmAKR with improved catalytic performance and extended substrate scope.
    Qiu S; Xu SY; Li SF; Meng KM; Cheng F; Wang YJ; Zheng YG
    Biotechnol J; 2021 Sep; 16(9):e2100130. PubMed ID: 34125995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring an aldo-keto reductase KmAKR for robust thermostability and catalytic efficiency by stepwise evolution and structure-guided consensus engineering.
    Li SF; Xie JY; Qiu S; Zhou SY; Wang YJ; Zheng YG
    Bioorg Chem; 2021 Apr; 109():104712. PubMed ID: 33735657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the catalytic efficiency of aldo-keto reductase KmAKR towards t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate via semi-rational design.
    Yu H; Qiu S; Cheng F; Cheng YN; Wang YJ; Zheng YG
    Bioorg Chem; 2019 Sep; 90():103018. PubMed ID: 31220674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-rational engineering of a Kluyveromyces lactis aldo-keto reductase KlAKR for improved catalytic efficiency towards t-butyl 6-cyano-(3R, 5R)-dihydroxyhexanoate.
    Shen W; Chen Y; Qiu S; Wang DN; Wang YJ; Zheng YG
    Enzyme Microb Technol; 2020 Jan; 132():109413. PubMed ID: 31731953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of Kluyveromyces marxianus ZJB14056 aldo-keto reductase KmAKR to enhance diastereoselectivity and activity.
    Wang YJ; Ying BB; Shen W; Zheng RC; Zheng YG
    Enzyme Microb Technol; 2017 Dec; 107():32-40. PubMed ID: 28899484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced diastereoselective synthesis of t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate by using aldo-keto reductase and glucose dehydrogenase co-producing engineered Escherichia coli.
    Wang YJ; Shen W; Luo X; Liu ZQ; Zheng YG
    Biotechnol Prog; 2017 Sep; 33(5):1235-1242. PubMed ID: 28842958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design.
    Luo X; Wang YJ; Shen W; Zheng YG
    J Biotechnol; 2016 Apr; 224():20-6. PubMed ID: 26959479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using carbonyl reductase coupled with glucose dehydrogenase with high space-time yield.
    Zhang XJ; Zheng L; Wu D; Zhou R; Liu ZQ; Zheng YG
    Biotechnol Prog; 2020 Jan; 36(1):e2900. PubMed ID: 31486281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of carbonyl reductase activity for the bioproduction of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate.
    Liu ZQ; Yin HH; Zhang XJ; Zhou R; Wang YM; Zheng YG
    Bioorg Chem; 2018 Oct; 80():733-740. PubMed ID: 30077176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed Evolution of Carbonyl Reductase from Rhodosporidium toruloides and Its Application in Stereoselective Synthesis of tert-Butyl (3R,5S)-6-Chloro-3,5-dihydroxyhexanoate.
    Liu ZQ; Wu L; Zhang XJ; Xue YP; Zheng YG
    J Agric Food Chem; 2017 May; 65(18):3721-3729. PubMed ID: 28425285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media.
    Liu ZQ; Wu L; Zheng L; Wang WZ; Zhang XJ; Jin LQ; Zheng YG
    Bioresour Technol; 2018 Feb; 249():161-167. PubMed ID: 29040850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by a stereoselective carbonyl reductase with high substrate concentration and product yield.
    Liu ZQ; Hu ZL; Zhang XJ; Tang XL; Cheng F; Xue YP; Wang YJ; Wu L; Yao DK; Zhou YT; Zheng YG
    Biotechnol Prog; 2017 May; 33(3):612-620. PubMed ID: 28268261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-rational engineering an aldo-keto reductase for stereocomplementary reduction of α-keto amide compounds.
    Bai R; Chen B; Zheng L
    Microb Cell Fact; 2023 Oct; 22(1):213. PubMed ID: 37840127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key sites insight on the stereoselectivity of four mined aldo-keto reductases toward α-keto esters and halogen-substituted acetophenones.
    Zhang W; Zhu T; Li H; Qin F; Zhang F; Zhang R; Jia X; Qin B; You S
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6119-6128. PubMed ID: 31165224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene mining, codon optimization and analysis of binding mechanism of an aldo-keto reductase with high activity, better substrate specificity and excellent solvent tolerance.
    Jiang W; Fu X; Wu W
    PLoS One; 2021; 16(12):e0260787. PubMed ID: 34855894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Aldo-Keto Reductases for the Biocatalytic Conversion of 3-Hydroxybutanal to 1,3-Butanediol: Structural and Biochemical Studies.
    Kim T; Flick R; Brunzelle J; Singer A; Evdokimova E; Brown G; Joo JC; Minasov GA; Anderson WF; Mahadevan R; Savchenko A; Yakunin AF
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.