These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37642147)

  • 21. Graphdiyne reinforced multifunctional Cu/Ni bimetallic Phosphides-Graphdiyne hybrid nanostructure as high performance electrocatalyst for water splitting.
    Gao J; Li Y; Yu X; Ma Y
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):508-518. PubMed ID: 35933868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions.
    Chen X; Ong WJ; Kong Z; Zhao X; Li N
    Sci Bull (Beijing); 2020 Jan; 65(1):45-54. PubMed ID: 36659068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The adsorption and dissociation of hydrogen sulfide on transition metal atoms decorated graphdiyne: a first-principles calculation.
    Wang Y; Wang J; Wang T; Qi H
    J Mol Model; 2022 Nov; 28(12):384. PubMed ID: 36370258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Hydrogen Evolution on Nanoscale Graphdiyne.
    Hui L; Xue Y; Liu Y; Li Y
    Small; 2021 Dec; 17(48):e2006136. PubMed ID: 33667018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-selective Hydrogenation/Deuteration of Benzylic Olefins Enabled by Electroreduction Using Water.
    Kolb S; Werz DB
    Chemistry; 2023 Jun; 29(32):e202300849. PubMed ID: 36972395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphdiyne/metal oxide hybrid materials for efficient energy and environmental catalysis.
    Zhu Y; Zhang S; Qiu X; Hao Q; Wu Y; Luo Z; Guo Y
    Chem Sci; 2024 Apr; 15(14):5061-5081. PubMed ID: 38577352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media.
    Wang Y; Yao J; Li H; Su D; Antonietti M
    J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis.
    Fang Y; Xue Y; Li Y; Yu H; Hui L; Liu Y; Xing C; Zhang C; Zhang D; Wang Z; Chen X; Gao Y; Huang B; Li Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):13021-13027. PubMed ID: 32333453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins.
    Vilé G; Bridier B; Wichert J; Pérez-Ramírez J
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8620-3. PubMed ID: 22811402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constructing Cu-C Bonds in a Graphdiyne-Regulated Cu Single-Atom Electrocatalyst for CO
    Shi G; Xie Y; Du L; Fu X; Chen X; Xie W; Lu TB; Yuan M; Wang M
    Angew Chem Int Ed Engl; 2022 Jun; 61(23):e202203569. PubMed ID: 35301781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled growth of a high selectivity interface for seawater electrolysis.
    Gao Y; Xue Y; He F; Li Y
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2206946119. PubMed ID: 36037378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BN cluster-doped graphdiyne as visible-light assisted metal-free catalysts for conversion CO
    Feng Z; Tang Y; Chen W; Li Y; Li R; Ma Y; Dai X
    Nanotechnology; 2020 Dec; 31(49):495401. PubMed ID: 32990268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO
    Zhu Q; Hu Y; Chen H; Meng C; Shang Y; Hao C; Wei S; Wang Z; Lu X; Liu S
    Nanoscale; 2023 Feb; 15(5):2106-2113. PubMed ID: 36648138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols.
    Bu J; Chang S; Li J; Yang S; Ma W; Liu Z; An S; Wang Y; Li Z; Zhang J
    Nat Commun; 2023 Mar; 14(1):1533. PubMed ID: 36941296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water.
    Wu Y; Liu C; Wang C; Yu Y; Shi Y; Zhang B
    Nat Commun; 2021 Jun; 12(1):3881. PubMed ID: 34162851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-Free Selective Semi-Hydrogenation of Alkynes Over an In Situ Formed Copper Nanoparticle Electrode.
    Guo P; Xu Y; Wu H; Zhang L
    Small; 2024 Mar; ():e2401107. PubMed ID: 38530045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Confined Growth of Highly Ordered Metal Atomic Arrays for Seawater Oxidation.
    Gao Y; Xue Y; Chen S; Zheng Y; Chen S; Zheng X; He F; Huang C; Li Y
    Angew Chem Int Ed Engl; 2024 Jun; ():e202406043. PubMed ID: 38866704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring the Fate of Copper Ions in the Synthesis of Graphdiyne.
    Zhang L; Li J; Wei G; Yang H; Bai H; Xi G
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202316936. PubMed ID: 38179834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural Characterization and Identification of Graphdiyne and Graphdiyne-Based Materials.
    Bao H; Wang L; Li C; Luo J
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2717-2729. PubMed ID: 29845862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Promotional effect of in situ generated hydroxyl on olefin selectivity of Co-catalyzed Fischer-Tropsch synthesis.
    Qi Y; Aaserud C; Holmen A; Yang J; Chen D
    Phys Chem Chem Phys; 2019 Nov; 21(44):24441-24448. PubMed ID: 31674631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.