These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37642291)

  • 1. Effect of increased running speed and weight carriage on peak and cumulative tibial loading.
    Rice H; Seynnes O; Werkhausen A
    Scand J Med Sci Sports; 2023 Dec; 33(12):2516-2523. PubMed ID: 37642291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speed and surface steepness affect internal tibial loading during running.
    Rice H; Kurz M; Mai P; Robertz L; Bill K; Derrick TR; Willwacher S
    J Sport Health Sci; 2024 Jan; 13(1):118-124. PubMed ID: 36931595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of load carriage on biomechanical variables associated with tibial stress fractures in running.
    Baggaley M; Esposito M; Xu C; Unnikrishnan G; Reifman J; Edwards WB
    Gait Posture; 2020 Mar; 77():190-194. PubMed ID: 32058282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast Running Does Not Contribute More to Cumulative Load than Slow Running.
    Hunter JG; Garcia GL; Shim JK; Miller RH
    Med Sci Sports Exerc; 2019 Jun; 51(6):1178-1185. PubMed ID: 30694982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women.
    Xu C; Silder A; Zhang J; Reifman J; Unnikrishnan G
    BMC Musculoskelet Disord; 2017 Mar; 18(1):125. PubMed ID: 28330449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Per-step and cumulative load at three common running injury locations: The effect of speed, surface gradient, and cadence.
    Van Hooren B; van Rengs L; Meijer K
    Scand J Med Sci Sports; 2024 Feb; 34(2):e14570. PubMed ID: 38389144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.
    Yang PF; Sanno M; Ganse B; Koy T; Brüggemann GP; Müller LP; Rittweger J
    PLoS One; 2014; 9(4):e94525. PubMed ID: 24732724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak and Per-Step Tibial Bone Stress During Walking and Running in Female and Male Recreational Runners.
    Meardon SA; Derrick TR; Willson JD; Baggaley M; Steinbaker CR; Marshall M; Willy RW
    Am J Sports Med; 2021 Jul; 49(8):2227-2237. PubMed ID: 34077287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating Tibial Stress throughout the Duration of a Treadmill Run.
    Rice H; Weir G; Trudeau MB; Meardon S; Derrick T; Hamill J
    Med Sci Sports Exerc; 2019 Nov; 51(11):2257-2264. PubMed ID: 31634292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibial stress during running following a repeated calf-raise protocol.
    Rice HM; Kenny M; Ellison MA; Fulford J; Meardon SA; Derrick TR; Hamill J
    Scand J Med Sci Sports; 2020 Dec; 30(12):2382-2389. PubMed ID: 32757284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered forefoot function following a military training activity.
    Rice H; Fallowfield J; Allsopp A; Dixon S
    Gait Posture; 2019 Oct; 74():182-186. PubMed ID: 31539799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of running speed on a probabilistic stress fracture model.
    Edwards WB; Taylor D; Rudolphi TJ; Gillette JC; Derrick TR
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):372-7. PubMed ID: 20096977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between tibial acceleration and ground reaction force measures in the medial-lateral and anterior-posterior planes.
    Johnson CD; Outerleys J; Davis IS
    J Biomech; 2021 Mar; 117():110250. PubMed ID: 33486264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal Tibial Forces and Moments During Graded Running.
    Baggaley M; Derrick TR; Vernillo G; Millet GY; Edwards WB
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34318310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of speed on Achilles tendon forces and patellofemoral joint stresses in high-performing endurance runners.
    Starbuck C; Bramah C; Herrington L; Jones R
    Scand J Med Sci Sports; 2021 Aug; 31(8):1657-1665. PubMed ID: 33864288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technologically advanced running shoes reduce oxygen cost and cumulative tibial loading per kilometer in recreational female and male runners.
    Werkhausen A; Lund-Hansen M; Wiedenbruch L; Peikenkamp K; Rice H
    Sci Rep; 2024 May; 14(1):11903. PubMed ID: 38789519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of body-borne loads and cadence manipulation on patellofemoral and tibiofemoral joint kinetics during running.
    Willy RW; Willson JD; Clowers K; Baggaley M; Murray N
    J Biomech; 2016 Dec; 49(16):4028-4033. PubMed ID: 27839698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cumulative patellofemoral force and stress are lower during faster running compared to slower running in recreational runners.
    Doyle EW; Doyle TLA; Bonacci J; Beach AJ; Fuller JT
    Sports Biomech; 2023 Jun; ():1-13. PubMed ID: 37364918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased medial longitudinal arch mobility, lower extremity kinematics, and ground reaction forces in high-arched runners.
    Williams DS; Tierney RN; Butler RJ
    J Athl Train; 2014; 49(3):290-6. PubMed ID: 24840580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech.
    Matijevich ES; Branscombe LM; Scott LR; Zelik KE
    PLoS One; 2019; 14(1):e0210000. PubMed ID: 30653510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.