These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 37642294)

  • 1. Biosensor-integrated transposon mutagenesis reveals
    Shee S; Veetil RT; Mohanraj K; Das M; Malhotra N; Bandopadhyay D; Beig H; Birua S; Niphadkar S; Nagarajan SN; Sinha VK; Thakur C; Rajmani RS; Chandra N; Laxman S; Singh M; Samal A; Seshasayee AN; Singh A
    Elife; 2023 Aug; 12():. PubMed ID: 37642294
    [No Abstract]   [Full Text] [Related]  

  • 2. Reengineering redox sensitive GFP to measure mycothiol redox potential of Mycobacterium tuberculosis during infection.
    Bhaskar A; Chawla M; Mehta M; Parikh P; Chandra P; Bhave D; Kumar D; Carroll KS; Singh A
    PLoS Pathog; 2014 Jan; 10(1):e1003902. PubMed ID: 24497832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response.
    Singh A; Crossman DK; Mai D; Guidry L; Voskuil MI; Renfrow MB; Steyn AJ
    PLoS Pathog; 2009 Aug; 5(8):e1000545. PubMed ID: 19680450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide.
    Tyagi P; Dharmaraja AT; Bhaskar A; Chakrapani H; Singh A
    Free Radic Biol Med; 2015 Jul; 84():344-354. PubMed ID: 25819161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis and survival in response to reactive oxygen and nitrogen species.
    Mehta M; Singh A
    Free Radic Biol Med; 2019 Feb; 131():50-58. PubMed ID: 30500421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids.
    Savvi S; Warner DF; Kana BD; McKinney JD; Mizrahi V; Dawes SS
    J Bacteriol; 2008 Jun; 190(11):3886-95. PubMed ID: 18375549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular peroxynitrite perturbs redox balance, bioenergetics, and Fe-S cluster homeostasis in Mycobacterium tuberculosis.
    Dewan A; Jain C; Das M; Tripathi A; Sharma AK; Singh H; Malhotra N; Seshasayee ASN; Chakrapani H; Singh A
    Redox Biol; 2024 Sep; 75():103285. PubMed ID: 39128229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection.
    López-Agudelo VA; Baena A; Ramirez-Malule H; Ochoa S; Barrera LF; Ríos-Estepa R
    BMC Syst Biol; 2017 Nov; 11(1):107. PubMed ID: 29157227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering the roles of
    Chen Y-C; Yang X; Wang N; Sampson NS
    mSphere; 2024 Apr; 9(4):e0006124. PubMed ID: 38564709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox homeostasis in mycobacteria: the key to tuberculosis control?
    Kumar A; Farhana A; Guidry L; Saini V; Hondalus M; Steyn AJ
    Expert Rev Mol Med; 2011 Dec; 13():e39. PubMed ID: 22172201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis.
    Upton AM; McKinney JD
    Microbiology (Reading); 2007 Dec; 153(Pt 12):3973-3982. PubMed ID: 18048912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of redox sensing in Mycobacterium tuberculosis.
    Bhat SA; Singh N; Trivedi A; Kansal P; Gupta P; Kumar A
    Free Radic Biol Med; 2012 Oct; 53(8):1625-41. PubMed ID: 22921590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium tuberculosis Rv1324 Protein Contributes to Mycobacterial Persistence and Causes Pathological Lung Injury in Mice by Inducing Ferroptosis.
    Shi X; Li C; Cheng L; Ullah H; Sha S; Kang J; Ma X; Ma Y
    Microbiol Spectr; 2023 Feb; 11(1):e0252622. PubMed ID: 36625672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis.
    Saini V; Cumming BM; Guidry L; Lamprecht DA; Adamson JH; Reddy VP; Chinta KC; Mazorodze JH; Glasgow JN; Richard-Greenblatt M; Gomez-Velasco A; Bach H; Av-Gay Y; Eoh H; Rhee K; Steyn AJC
    Cell Rep; 2016 Jan; 14(3):572-585. PubMed ID: 26774486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis.
    Lee JJ; Lim J; Gao S; Lawson CP; Odell M; Raheem S; Woo J; Kang SH; Kang SS; Jeon BY; Eoh H
    Sci Rep; 2018 May; 8(1):8506. PubMed ID: 29855554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rv0495c regulates redox homeostasis in Mycobacterium tuberculosis.
    Pal R; Talwar S; Pandey M; Nain VK; Sharma T; Tyagi S; Barik V; Chaudhary S; Gupta SK; Kumar Y; Nanda R; Singhal A; Pandey AK
    Tuberculosis (Edinb); 2024 Mar; 145():102477. PubMed ID: 38211498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive Stress: New Insights in Physiology and Drug Tolerance of
    Mavi PS; Singh S; Kumar A
    Antioxid Redox Signal; 2020 Jun; 32(18):1348-1366. PubMed ID: 31621379
    [No Abstract]   [Full Text] [Related]  

  • 18. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival.
    Singh A; Guidry L; Narasimhulu KV; Mai D; Trombley J; Redding KE; Giles GI; Lancaster JR; Steyn AJ
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11562-7. PubMed ID: 17609386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the NADH:NAD
    Bhat SA; Iqbal IK; Kumar A
    Front Cell Infect Microbiol; 2016; 6():145. PubMed ID: 27878107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-dependent condensation of the mycobacterial nucleoid by WhiB4.
    Chawla M; Mishra S; Anand K; Parikh P; Mehta M; Vij M; Verma T; Singh P; Jakkala K; Verma HN; AjitKumar P; Ganguli M; Narain Seshasayee AS; Singh A
    Redox Biol; 2018 Oct; 19():116-133. PubMed ID: 30149290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.