These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37642365)

  • 1. Predicting phosphorus accumulation and proposing conditions needed for an algal-based phosphorus uptake process.
    Brown N; Sells M; Jayamaha N; Shilton A
    Environ Technol; 2023 Sep; ():1-11. PubMed ID: 37642365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining variables that influence the phosphorus content of waste stabilization pond algae.
    Sells MD; Brown N; Shilton AN
    Water Res; 2018 Apr; 132():301-308. PubMed ID: 29334649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds.
    Powell N; Shilton AN; Pratt S; Chisti Y
    Environ Sci Technol; 2008 Aug; 42(16):5958-62. PubMed ID: 18767651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a luxury uptake process via microalgae--defining the polyphosphate dynamics.
    Powell N; Shilton A; Chisti Y; Pratt S
    Water Res; 2009 Sep; 43(17):4207-13. PubMed ID: 19616819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds.
    Powell N; Shilton A; Pratt S; Chisti Y
    Water Sci Technol; 2011; 63(4):704-9. PubMed ID: 21330717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgal luxury uptake of phosphorus in waste stabilization ponds - frequency of occurrence and high performing genera.
    Crimp A; Brown N; Shilton A
    Water Sci Technol; 2018 Aug; 78(1-2):165-173. PubMed ID: 30101799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate release from waste stabilisation pond sludge: significance and fate of polyphosphate.
    Powell N; Shilton A; Pratt S; Chisti Y
    Water Sci Technol; 2011; 63(8):1689-94. PubMed ID: 21866769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Winter-time CO2 addition in high rate algal mesocosms for enhanced microalgal performance.
    Sutherland DL; Montemezzani V; Mehrabadi A; Craggs RJ
    Water Res; 2016 Feb; 89():301-8. PubMed ID: 26707731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting microalgae growth and phosphorus removal in cold region waste stabilization ponds using a stochastic modelling approach.
    Schmidt JJ; Gagnon GA; Jamieson RC
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32952-32963. PubMed ID: 28660515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae.
    Sutherland DL; Bramucci A
    J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.
    Camargo Valero MA; Mara DD; Newton RJ
    Water Sci Technol; 2010; 61(4):1027-34. PubMed ID: 20182083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow cytometry for rapid characterisation of microbial community dynamics in waste stabilisation ponds.
    Coggins LX; Larma I; Hinchliffe A; Props R; Ghadouani A
    Water Res; 2020 Feb; 169():115243. PubMed ID: 31704461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algae-based approaches for Holistic wastewater management: A low-cost paradigm.
    Singh S; Singh L; Kumar V; Ali W; Ramamurthy PC; Singh Dhanjal D; Sivaram N; Angurana R; Singh J; Chandra Pandey V; Khan NA
    Chemosphere; 2023 Dec; 345():140470. PubMed ID: 37858768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wastewater treatment using filamentous algae - A review.
    Liu J; Pemberton B; Lewis J; Scales PJ; Martin GJO
    Bioresour Technol; 2020 Feb; 298():122556. PubMed ID: 31843358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus removal from wastewater by microalgae in Sweden--a year-round perspective.
    Larsdotter K; Jansen Jl; Dalhammar G
    Environ Technol; 2010 Feb; 31(2):117-23. PubMed ID: 20391796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into aerobic phosphorus removal from wastewater in algal-bacterial aerobic granular sludge system.
    Li Z; Wang J; Chen X; Lei Z; Yuan T; Shimizu K; Zhang Z; Lee DJ
    Bioresour Technol; 2022 May; 352():127104. PubMed ID: 35378284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing phosphorus removal for municipal wastewater post-treatment with Chlorella vulgaris.
    Lavrinovičs A; Mežule L; Cacivkins P; Juhna T
    J Environ Manage; 2022 Dec; 324():116313. PubMed ID: 36191504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.
    Park JB; Craggs RJ
    Water Sci Technol; 2011; 63(10):2403-10. PubMed ID: 21977667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waste Stabilization Pond (WSP) for wastewater treatment: A review on factors, modelling and cost analysis.
    Mahapatra S; Samal K; Dash RR
    J Environ Manage; 2022 Apr; 308():114668. PubMed ID: 35152038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.