BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37642402)

  • 1. Deciphering the Role of the Ser-Phosphorylation Pattern on the DNA-Binding Activity of Max Transcription Factor Using Chemical Protein Synthesis.
    Nithun RV; Yao YM; Lin X; Habiballah S; Afek A; Jbara M
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202310913. PubMed ID: 37642402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1.
    Krippner-Heidenreich A; Talanian RV; Sekul R; Kraft R; Thole H; Ottleben H; Lüscher B
    Biochem J; 2001 Sep; 358(Pt 3):705-15. PubMed ID: 11535131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of transcription factors c-Myc, Max, and c-Myb by casein kinase II.
    Bousset K; Oelgeschläger MH; Henriksson M; Schreek S; Burkhardt H; Litchfield DW; Lüscher-Firzlaff JM; Lüscher B
    Cell Mol Biol Res; 1994; 40(5-6):501-11. PubMed ID: 7735324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TF-centered downstream gene set enrichment analysis: Inference of causal regulators by integrating TF-DNA interactions and protein post-translational modifications information.
    Liu Q; Tan Y; Huang T; Ding G; Tu Z; Liu L; Li Y; Dai H; Xie L
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S5. PubMed ID: 21172055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Max activity is affected by phosphorylation at two NH2-terminal sites.
    Koskinen PJ; Västrik I; Mäkelä TP; Eisenman RN; Alitalo K
    Cell Growth Differ; 1994 Mar; 5(3):313-20. PubMed ID: 8018564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Synthesis of HMGA1a Proteins with Post-translational Modifications via Ser/Thr Ligation.
    Li T; Liu H; Li X
    Org Lett; 2016 Nov; 18(22):5944-5947. PubMed ID: 27934496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting post-translational modification of transcription factors as cancer therapy.
    Qian M; Yan F; Yuan T; Yang B; He Q; Zhu H
    Drug Discov Today; 2020 Aug; 25(8):1502-1512. PubMed ID: 32540433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myc phosphorylation in its basic helix-loop-helix region destabilizes transient α-helical structures, disrupting Max and DNA binding.
    Macek P; Cliff MJ; Embrey KJ; Holdgate GA; Nissink JWM; Panova S; Waltho JP; Davies RA
    J Biol Chem; 2018 Jun; 293(24):9301-9310. PubMed ID: 29695509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers.
    Berberich SJ; Cole MD
    Genes Dev; 1992 Feb; 6(2):166-76. PubMed ID: 1737614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential patterns of DNA binding by myc and max proteins.
    Prochownik EV; VanAntwerp ME
    Proc Natl Acad Sci U S A; 1993 Feb; 90(3):960-4. PubMed ID: 8430110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein kinase-A dependent phosphorylation of transcription enhancer factor-1 represses its DNA-binding activity but enhances its gene activation ability.
    Gupta MP; Kogut P; Gupta M
    Nucleic Acids Res; 2000 Aug; 28(16):3168-77. PubMed ID: 10931933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Disordered MAX N-terminus Modulates DNA Binding of the Transcription Factor MYC:MAX.
    Schütz S; Bergsdorf C; Goretzki B; Lingel A; Renatus M; Gossert AD; Jahnke W
    J Mol Biol; 2022 Nov; 434(22):167833. PubMed ID: 36174765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Synthesis of a Full-Length G-Protein-Coupled Receptor β
    Li Y; Heng J; Sun D; Zhang B; Zhang X; Zheng Y; Shi WW; Wang TY; Li JY; Sun X; Liu X; Zheng JS; Kobilka BK; Liu L
    J Am Chem Soc; 2021 Oct; 143(42):17566-17576. PubMed ID: 34663067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Max is acetylated by p300 at several nuclear localization residues.
    Faiola F; Wu YT; Pan S; Zhang K; Farina A; Martinez E
    Biochem J; 2007 May; 403(3):397-407. PubMed ID: 17217336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability selection for regression-based models of transcription factor-DNA binding specificity.
    Mordelet F; Horton J; Hartemink AJ; Engelhardt BE; Gordân R
    Bioinformatics; 2013 Jul; 29(13):i117-25. PubMed ID: 23812975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers.
    Bousset K; Henriksson M; Lüscher-Firzlaff JM; Litchfield DW; Lüscher B
    Oncogene; 1993 Dec; 8(12):3211-20. PubMed ID: 8247525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative Chemical Biology Approaches to Deciphering the Histone Code: A Problem-Driven Journey.
    Li X; Li XD
    Acc Chem Res; 2021 Oct; 54(19):3734-3747. PubMed ID: 34553920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.