BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37642585)

  • 1. Ion-Induced Reassembly between Protein Nanotubes and Nanospheres.
    Zhang J; Liu B; Li D; Radiom M; Zhang H; Cohen Stuart MA; Sagis LMC; Li Z; Chen S; Li X; Li Y
    Biomacromolecules; 2023 Sep; 24(9):3985-3995. PubMed ID: 37642585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetic mechanism of cations induced protein nanotubes self-assembly and their application as delivery system.
    Zhang J; Wang Q; Liu B; Li D; Zhang H; Wang P; Liu J; Hou G; Li X; Yuan Y; Li Z; Chen S; Yan H; Li Y
    Biomaterials; 2022 Jul; 286():121600. PubMed ID: 35660822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH dependent molecular self-assembly of octaphosphonate porphyrin of nanoscale dimensions: nanosphere and nanorod aggregates.
    Bhosale SV; Kalyankar MB; Nalage SV; Lalander CH; Bhosale SV; Langford SJ; Oliver RF
    Int J Mol Sci; 2011; 12(3):1464-73. PubMed ID: 21673901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of amelogenin proteins at the water-oil interface.
    Martinez-Avila OM; Wu S; Cheng Y; Lee R; Khan F; Habelitz S
    Eur J Oral Sci; 2011 Dec; 119 Suppl 1(Suppl 1):75-82. PubMed ID: 22243231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies.
    Yan X; Cui Y; He Q; Wang K; Li J; Mu W; Wang B; Ou-Yang ZC
    Chemistry; 2008; 14(19):5974-80. PubMed ID: 18478616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation Triggered Self-Assembly of α-Lactalbumin Nanotubes.
    Liu B; Radiom M; Zhou J; Yan H; Zhang J; Wu D; Sun Q; Xuan Q; Li Y; Mezzenga R
    Nano Lett; 2024 Apr; ():. PubMed ID: 38598498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and mechanical study of a self-assembling protein nanotube.
    Graveland-Bikker JF; Schaap IA; Schmidt CF; de Kruif CG
    Nano Lett; 2006 Apr; 6(4):616-21. PubMed ID: 16608254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of amyloid Aβ(1-42) peptide with self-assembled peptide nanospheres.
    Smoak EM; Dabakis MP; Henricus MM; Tamayev R; Banerjee IA
    J Pept Sci; 2011 Jan; 17(1):14-23. PubMed ID: 20814889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochromic nanostructures based on diarylethenes with perylene diimide.
    Ma L; Wang Q; Lu G; Chen R; Sun X
    Langmuir; 2010 May; 26(9):6702-7. PubMed ID: 20035572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of various porphyrin nanostructures via an oil/aqueous medium: controlled self-assembly, further organization, and supramolecular chirality.
    Qiu Y; Chen P; Liu M
    J Am Chem Soc; 2010 Jul; 132(28):9644-52. PubMed ID: 20578772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-assembly of a multicomponent network of nanofiber-wrapped nanotubes.
    Mason ML; Lin T; Linville JJ; Parquette JR
    Nanoscale; 2022 Mar; 14(12):4531-4537. PubMed ID: 35258058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular self-assembly into one-dimensional nanostructures.
    Palmer LC; Stupp SI
    Acc Chem Res; 2008 Dec; 41(12):1674-84. PubMed ID: 18754628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembled alginate/chitosan nanotubes for biological application.
    Yang Y; He Q; Duan L; Cui Y; Li J
    Biomaterials; 2007 Jul; 28(20):3083-90. PubMed ID: 17428534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Transport of Shape and Rigidity-Tuned α-Lactalbumin Nanotubes across Intestinal Mucus and Cellular Barriers.
    Bao C; Liu B; Li B; Chai J; Zhang L; Jiao L; Li D; Yu Z; Ren F; Shi X; Li Y
    Nano Lett; 2020 Feb; 20(2):1352-1361. PubMed ID: 31904988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Cyclic Peptide-Based Nanospheres and the Delivery of siRNA.
    Ke J; Zhang J; Li J; Liu J; Guan S
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36292932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotubes, Plates, and Needles: Pathway-Dependent Self-Assembly of Computationally Designed Peptides.
    Tian Y; Polzer FB; Zhang HV; Kiick KL; Saven JG; Pochan DJ
    Biomacromolecules; 2018 Nov; 19(11):4286-4298. PubMed ID: 30299090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic garden of state of the art natural protein nanoarchitectures dispersed in nanofluids.
    Esmaeilzadeh P; Fakhroueian Z; Jahanshahi M; Chamani M; Zamanizadeh HR; Rasekh B
    J Biomed Nanotechnol; 2011 Jun; 7(3):433-40. PubMed ID: 21830485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryogenic TEM imaging of artificial light harvesting complexes outside equilibrium.
    Krishnaswamy SR; Gabrovski IA; Patmanidis I; Stuart MCA; de Vries AH; Pshenichnikov MS
    Sci Rep; 2022 Apr; 12(1):5552. PubMed ID: 35365716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Controlled Chiral Packing and Self-Assembly of a Coumarin Tetrapeptide.
    Mason ML; Lalisse RF; Finnegan TJ; Hadad CM; Modarelli DA; Parquette JR
    Langmuir; 2019 Sep; 35(38):12460-12468. PubMed ID: 31469284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.