BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37642585)

  • 21. Self-assembly into temperature dependent micro-/nano-aggregates of 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin.
    Liu Q; Zhou H; Zhu J; Yang Y; Liu X; Wang D; Zhang X; Zhuo L
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4944-51. PubMed ID: 24094208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From Block Copolymer Nanotubes to Nanospheres: Nonsolvent-Induced Morphology Transformation Using Porous Templates.
    Chang CW; Tu YH; Luo KH; Chen JT
    Langmuir; 2018 Nov; 34(47):14388-14394. PubMed ID: 30376343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of biocompatible and proton-resistant quantum dots assembled on gelatin nanospheres.
    Chen L; Siemiarczuk A; Hai H; Chen Y; Huang G; Zhang J
    Langmuir; 2014 Feb; 30(7):1893-9. PubMed ID: 24506768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Comprehensive Review of Self-Assembled Food Protein-Derived Multicomponent Peptides: From Forming Mechanism and Structural Diversity to Applications.
    Li Y; Liu J; Zhang H; Shi X; Li S; Yang M; Zhang T; Xiao H; Du Z
    J Agric Food Chem; 2023 Aug; 71(30):11304-11319. PubMed ID: 37486612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils.
    Zhao Y; Deng L; Wang J; Xu H; Lu JR
    Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.
    Adler-Abramovich L; Marco P; Arnon ZA; Creasey RC; Michaels TC; Levin A; Scurr DJ; Roberts CJ; Knowles TP; Tendler SJ; Gazit E
    ACS Nano; 2016 Aug; 10(8):7436-42. PubMed ID: 27351519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The fortification of encapsulated soy isoflavones and texture modification of soy milk by α-lactalbumin nanotubes.
    Liu B; Thum C; Wang Q; Feng C; Li T; Damiani Victorelli F; Li X; Chang R; Chen S; Gong Y; Li Y
    Food Chem; 2023 Sep; 419():135979. PubMed ID: 37030206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solvent-controlled reversible switching between adsorbed self-assembled nanoribbons and nanotubes.
    Jamal A; Nyrkova I; Mesini P; Militzer S; Reiter G
    Nanoscale; 2017 Mar; 9(9):3293-3303. PubMed ID: 28225113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amphiphilic Peptoid-Directed Assembly of Oligoanilines into Highly Crystalline Conducting Nanotubes.
    Li Z; Tran DK; Nguyen M; Jian T; Yan F; Jenekhe SA; Chen CL
    Macromol Rapid Commun; 2022 Feb; 43(4):e2100639. PubMed ID: 35038198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disassembly of Nanospheres with a PEG Shell upon Adsorption onto PEGylated Substrates.
    Patel A; Lima MRN; Cho HY; Lee KB; Murthy NS; Kohn J
    Langmuir; 2020 Jan; 36(1):232-241. PubMed ID: 31825622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology.
    Adler-Abramovich L; Gazit E
    J Pept Sci; 2008 Feb; 14(2):217-23. PubMed ID: 18035858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme-controlled self-assembly and transformation of nanostructures in a tetramethylbenzidine/horseradish peroxidase/H2O2 system.
    Gao L; Wu J; Gao D
    ACS Nano; 2011 Aug; 5(8):6736-42. PubMed ID: 21761873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pH-controlled morphology transition of polyaniline from nanofibers to nanospheres.
    Shi J; Wu Q; Li R; Zhu Y; Qin Y; Qiao C
    Nanotechnology; 2013 May; 24(17):175602. PubMed ID: 23571614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of hollow CaCO3 nanospheres templated by micelles of poly(styrene-b-acrylic acid-b-ethylene glycol) in aqueous solutions.
    Bastakoti BP; Guragain S; Yokoyama Y; Yusa S; Nakashima K
    Langmuir; 2011 Jan; 27(1):379-84. PubMed ID: 21117696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphology control between twisted ribbon, helical ribbon, and nanotube self-assemblies with his-containing helical peptides in response to pH change.
    Uesaka A; Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    Langmuir; 2014 Feb; 30(4):1022-8. PubMed ID: 24410257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of pH, protein concentration and calcium ratio on the formation and structure of nanotubes from partially hydrolyzed bovine α-lactalbumin.
    Geng X; Kirkensgaard JJK; Arleth L; Otte J; Ipsen R
    Soft Matter; 2019 Jun; 15(24):4787-4796. PubMed ID: 31062808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembly of protein-based biomaterials initiated by titania nanotubes.
    Forstater JH; Kleinhammes A; Wu Y
    Langmuir; 2013 Dec; 29(48):15013-21. PubMed ID: 24200123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH and Glutathione Synergistically Triggered Release and Self-Assembly of Au Nanospheres for Tumor Theranostics.
    An L; Cao M; Zhang X; Lin J; Tian Q; Yang S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8050-8061. PubMed ID: 31994376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chitosan hollow nanospheres fabricated from biodegradable poly-D,L-lactide-poly(ethylene glycol) nanoparticle templates.
    Wang W; Luo C; Shao S; Zhou S
    Eur J Pharm Biopharm; 2010 Nov; 76(3):376-83. PubMed ID: 20816958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.