These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37642849)

  • 1. Bioconversion of Phytosterols into Androstenedione by Mycolicibacterium.
    Josefsen KD; Nordborg A; Le SB; Olsen SM; Sletta H
    Methods Mol Biol; 2023; 2704():245-267. PubMed ID: 37642849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of Phytosterols into Androstenedione by Mycobacterium.
    Josefsen KD; Nordborg A; Sletta H
    Methods Mol Biol; 2017; 1645():177-197. PubMed ID: 28710629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale-Up of Phytosterols Bioconversion into Androstenedione.
    Martínez-Cámara S; de la Torre M; Barredo JL; Rodríguez-Sáiz M
    Methods Mol Biol; 2023; 2704():231-243. PubMed ID: 37642848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale-Up of Phytosterols Bioconversion into Androstenedione.
    Martínez-Cámara S; Bahíllo E; Barredo JL; Rodríguez-Sáiz M
    Methods Mol Biol; 2017; 1645():199-210. PubMed ID: 28710630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation of Mycolicibacterium spp. Mutants in Miniaturized and High-Throughput Format to Characterize Their Growth, Phytosterol Conversion Ability, and Resistance to the Steroid Products.
    Le SB; Nordborg A; Josefsen KD; Olsen SM; Sletta H
    Methods Mol Biol; 2023; 2704():185-200. PubMed ID: 37642845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion of Phytosterols into Androstadienedione by Mycobacterium smegmatis CECT 8331.
    García-Fernández J; Martínez I; Fernández-Cabezón L; Felpeto-Santero C; García JL; Galán B
    Methods Mol Biol; 2017; 1645():211-225. PubMed ID: 28710631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of Phytosterols into Androstenedione-A Technological Prospecting Study.
    Nunes VO; Vanzellotti NC; Fraga JL; Pessoa FLP; Ferreira TF; Amaral PFF
    Molecules; 2022 May; 27(10):. PubMed ID: 35630641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obtaining of 24-Norchol-4-ene-3,22-dione from Phytosterol with Mutants of Mycolicibacterium neoaurum.
    Dovbnya DV; Ivashina TV; Khomutov SM; Shutov AA; Deshcherevskaya NO; Donova MV
    Methods Mol Biol; 2023; 2704():291-312. PubMed ID: 37642852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in
    Zhang Y; Xiao P; Pan D; Zhou X
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconversion of Phytosterols to 9-Hydroxy-3-Oxo-4,17-Pregadiene-20-Carboxylic Acid Methyl Ester by Enoyl-CoA Deficiency and Modifying Multiple Genes in Mycolicibacterium neoaurum.
    Yuan C; Song S; He J; Zhang J; Liu X; Pena EL; Sun J; Shi J; Su Z; Zhang B
    Appl Environ Microbiol; 2022 Nov; 88(22):e0130322. PubMed ID: 36286498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Construction of strains for bioconversion of steroid key intermediates and intelligent industrial production].
    Feng J; Zhang R; Zhang Z; Wu Q; Zhu D
    Sheng Wu Gong Cheng Xue Bao; 2022 Nov; 38(11):4335-4342. PubMed ID: 37699693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway.
    Song S; He J; Gao M; Huang Y; Cheng X; Su Z
    Microb Cell Fact; 2023 Jan; 22(1):19. PubMed ID: 36710325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum.
    Su L; Xu S; Shen Y; Xia M; Ren X; Wang L; Shang Z; Wang M
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32414803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycolicibacterium cell factory for the production of steroid-based drug intermediates.
    Zhao A; Zhang X; Li Y; Wang Z; Lv Y; Liu J; Alam MA; Xiong W; Xu J
    Biotechnol Adv; 2021 Dec; 53():107860. PubMed ID: 34710554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal substrate inhibition during microbial transformation of phytosterols in Pickering emulsions.
    Zhao W; Xie H; Zhang X; Wang Z
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2403-2414. PubMed ID: 35352152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp.
    Xu XW; Gao XQ; Feng JX; Wang XD; Wei DZ
    Lett Appl Microbiol; 2015 Jul; 61(1):63-8. PubMed ID: 25868395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined enhancement of the propionyl-CoA metabolic pathway for efficient androstenedione production in Mycolicibacterium neoaurum.
    Su Z; Zhang Z; Yu J; Yuan C; Shen Y; Wang J; Su L; Wang M
    Microb Cell Fact; 2022 Oct; 21(1):218. PubMed ID: 36266684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and Biotransformation of Phytosterol Microdispersions to Produce 4-Androstene-3,17-Dione.
    Mancilla RA; Pavez-Díaz R; Amoroso A
    Methods Mol Biol; 2017; 1645():159-165. PubMed ID: 28710627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Androstenedione production by biotransformation of phytosterols.
    Malaviya A; Gomes J
    Bioresour Technol; 2008 Oct; 99(15):6725-37. PubMed ID: 18329874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered mycolicibacterium neoaurum.
    Zhao YQ; Liu YJ; Ji WT; Liu K; Gao B; Tao XY; Zhao M; Wang FQ; Wei DZ
    Microb Cell Fact; 2022 Apr; 21(1):59. PubMed ID: 35397581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.