BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37643082)

  • 1. An Effective Plant Small Secretory Peptide Recognition Model Based on Feature Correction Strategy.
    Wang R; Zhou Z; Wu X; Jiang X; Zhuo L; Liu M; Li H; Fu X; Yao X
    J Chem Inf Model; 2024 Apr; 64(7):2798-2806. PubMed ID: 37643082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides.
    Li Z; Jin J; Wang Y; Long W; Ding Y; Hu H; Wei L
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36897030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. StableDNAm: towards a stable and efficient model for predicting DNA methylation based on adaptive feature correction learning.
    Zhuo L; Wang R; Fu X; Yao X
    BMC Genomics; 2023 Dec; 24(1):742. PubMed ID: 38053026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNAI-FRID: novel feature representation method with information enhancement and dimension reduction for RNA-RNA interaction.
    Kang Q; Meng J; Luan Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning.
    Jiao S; Chen Z; Zhang L; Zhou X; Shi L
    Amino Acids; 2022 May; 54(5):799-809. PubMed ID: 35286461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular property prediction by contrastive learning with attention-guided positive sample selection.
    Wang J; Guan J; Zhou S
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37079731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein interaction site prediction.
    Kang Y; Xu Y; Wang X; Pu B; Yang X; Rao Y; Chen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36403092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CACPP: A Contrastive Learning-Based Siamese Network to Identify Anticancer Peptides Based on Sequence Only.
    Yang X; Jin J; Wang R; Li Z; Wang Y; Wei L
    J Chem Inf Model; 2024 Apr; 64(7):2807-2816. PubMed ID: 37252890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model.
    Akbar S; Ahmad A; Hayat M; Rehman AU; Khan S; Ali F
    Comput Biol Med; 2021 Oct; 137():104778. PubMed ID: 34481183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation.
    Chen XG; Zhang W; Yang X; Li C; Chen H
    Front Genet; 2021; 12():698477. PubMed ID: 34276801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature extraction framework based on contrastive learning with adaptive positive and negative samples.
    Zhang H; Zhao S; Qiang W; Chen Y; Jing L
    Neural Netw; 2022 Dec; 156():244-257. PubMed ID: 36283288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full Transformer Framework for Robust Point Cloud Registration With Deep Information Interaction.
    Chen G; Wang M; Zhang Q; Yuan L; Yue Y
    IEEE Trans Neural Netw Learn Syst; 2023 May; PP():. PubMed ID: 37163402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SENet: A deep learning framework for discriminating super- and typical enhancers by sequence information.
    Luo H; Li Y; Liu H; Ding P; Yu Y; Luo L
    Comput Biol Chem; 2023 Aug; 105():107905. PubMed ID: 37348298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCirc: random forest-based plant circRNA identification software.
    Yin S; Tian X; Zhang J; Sun P; Li G
    BMC Bioinformatics; 2021 Jan; 22(1):10. PubMed ID: 33407069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation-Guided Representation Learning.
    Kang Z; Lu X; Liang J; Bai K; Xu Z
    Neural Netw; 2020 Nov; 131():93-102. PubMed ID: 32763763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.