These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37643082)

  • 21. MA-PEP: A novel anticancer peptide prediction framework with multimodal feature fusion based on attention mechanism.
    Liang X; Zhao H; Wang J
    Protein Sci; 2024 Apr; 33(4):e4966. PubMed ID: 38532681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FCMSTrans: Accurate Prediction of Disease-Associated nsSNPs by Utilizing Multiscale Convolution and Deep Feature Combination within a Transformer Framework.
    Zhang M; Gong C; Ge F; Yu DJ
    J Chem Inf Model; 2024 Feb; 64(4):1394-1406. PubMed ID: 38349747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein interaction site prediction.
    Kang Y; Xu Y; Wang X; Pu B; Yang X; Rao Y; Chen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36403092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contrastive representation learning of inorganic materials to overcome lack of training datasets.
    Na GS; Kim HW
    Chem Commun (Camb); 2022 Jun; 58(47):6729-6732. PubMed ID: 35604356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning.
    Wei L; Ye X; Sakurai T; Mu Z; Wei L
    Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Cross-Scale Transformer and Triple-View Attention Based Domain-Rectified Transfer Learning for EEG Classification in RSVP Tasks.
    Luo J; Cui W; Xu S; Wang L; Chen H; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():672-683. PubMed ID: 38285586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion.
    Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S
    Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Psychosis speech recognition algorithm based on deep embedded sparse stacked autoencoder and manifold ensemble].
    Zhang Y; Qin X; Lin Y; Li Y; Wang P; Zhang Z; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Aug; 38(4):655-662. PubMed ID: 34459164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TPFR-Net: U-shaped model for lung nodule segmentation based on transformer pooling and dual-attention feature reorganization.
    Li X; Jiang A; Qiu Y; Li M; Zhang X; Yan S
    Med Biol Eng Comput; 2023 Aug; 61(8):1929-1946. PubMed ID: 37243853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feature extraction framework based on contrastive learning with adaptive positive and negative samples.
    Zhang H; Zhao S; Qiang W; Chen Y; Jing L
    Neural Netw; 2022 Dec; 156():244-257. PubMed ID: 36283288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constructing discriminative feature space for LncRNA-protein interaction based on deep autoencoder and marginal fisher analysis.
    Teng Z; Zhang Y; Dai Q; Wu C; Li D
    Comput Biol Med; 2023 May; 157():106711. PubMed ID: 36924738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. prPred-DRLF: Plant R protein predictor using deep representation learning features.
    Wang Y; Xu L; Zou Q; Lin C
    Proteomics; 2022 Jan; 22(1-2):e2100161. PubMed ID: 34569713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SENet: A deep learning framework for discriminating super- and typical enhancers by sequence information.
    Luo H; Li Y; Liu H; Ding P; Yu Y; Luo L
    Comput Biol Chem; 2023 Aug; 105():107905. PubMed ID: 37348298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. StackEPI: identification of cell line-specific enhancer-promoter interactions based on stacking ensemble learning.
    Fan Y; Peng B
    BMC Bioinformatics; 2022 Jul; 23(1):272. PubMed ID: 35820811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. miPEPPred-FRL: A Novel Method for Predicting Plant MiRNA-Encoded Peptides Using Adaptive Feature Representation Learning.
    Li H; Meng J; Wang Z; Tang Y; Xia S; Wang Y; Qin Z; Luan Y
    J Chem Inf Model; 2024 Apr; 64(7):2889-2900. PubMed ID: 37733290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.