These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37643086)

  • 1. Control of Photoswitching Kinetics with Strong Light-Matter Coupling in a Cavity.
    Zeng H; Pérez-Sánchez JB; Eckdahl CT; Liu P; Chang WJ; Weiss EA; Kalow JA; Yuen-Zhou J; Stern NP
    J Am Chem Soc; 2023 Sep; 145(36):19655-19661. PubMed ID: 37643086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime.
    Dutta A; Tiainen V; Sokolovskii I; Duarte L; Markešević N; Morozov D; Qureshi HA; Pikker S; Groenhof G; Toppari JJ
    Nat Commun; 2024 Aug; 15(1):6600. PubMed ID: 39097575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressing non-radiative decay of photochromic organic molecular systems in the strong coupling regime.
    Couto RC; Kowalewski M
    Phys Chem Chem Phys; 2022 Aug; 24(32):19199-19208. PubMed ID: 35861014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions.
    Zhang Y; Nelson T; Tretiak S
    J Chem Phys; 2019 Oct; 151(15):154109. PubMed ID: 31640366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From weak to strong coupling: quasi-BIC metasurfaces for mid-infrared light-matter interactions.
    Biswas SK; Adi W; Beisenova A; Rosas S; Arvelo ER; Yesilkoy F
    Nanophotonics; 2024 Jul; 13(16):2937-2949. PubMed ID: 39006137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-responsive organic polaritons from first principles.
    Guo X; Cheng X; Zhang H
    Phys Chem Chem Phys; 2023 Aug; 25(34):23092-23099. PubMed ID: 37602397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Molecular Photoisomerization in Photonic Cavities through Polariton Funneling.
    Lee I; Melton SR; Xu D; Delor M
    J Am Chem Soc; 2024 Apr; 146(14):9544-9553. PubMed ID: 38530932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning.
    Rana B; Hohenstein EG; Martínez TJ
    J Phys Chem A; 2024 Jan; 128(1):139-151. PubMed ID: 38110364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities.
    Fischer EW; Saalfrank P
    J Chem Phys; 2021 Mar; 154(10):104311. PubMed ID: 33722029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong light-matter interactions: a new direction within chemistry.
    Hertzog M; Wang M; Mony J; Börjesson K
    Chem Soc Rev; 2019 Feb; 48(3):937-961. PubMed ID: 30662987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating New Reactivities Enabled by Polariton Photochemistry.
    Mandal A; Huo P
    J Phys Chem Lett; 2019 Sep; 10(18):5519-5529. PubMed ID: 31475529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the nonadiabatic electron-transfer reaction rate through molecular-vibration polaritons in the ultrastrong coupling regime.
    Phuc NT; Trung PQ; Ishizaki A
    Sci Rep; 2020 Apr; 10(1):7318. PubMed ID: 32355233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-reaction: The collective enhancement of a reaction rate by molecular polaritons in the presence of energy fluctuations.
    Thanh Phuc N
    J Chem Phys; 2021 Jul; 155(1):014308. PubMed ID: 34241378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the Photostability of Pyrrole with Optical Nanocavities.
    Gudem M; Kowalewski M
    J Phys Chem A; 2021 Feb; 125(5):1142-1151. PubMed ID: 33464084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-off conduction photoswitching in modelled spiropyran-based metal-organic frameworks.
    Mostaghimi M; Pacheco Hernandez H; Jiang Y; Wenzel W; Heinke L; Kozlowska M
    Commun Chem; 2023 Dec; 6(1):275. PubMed ID: 38110545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Signature for Strong Light-Matter Coupling Using Spectroscopic Ellipsometry.
    Thomas PA; Tan WJ; Fernandez HA; Barnes WL
    Nano Lett; 2020 Sep; 20(9):6412-6419. PubMed ID: 32709208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-adiabatic dynamics of molecules in optical cavities.
    Kowalewski M; Bennett K; Mukamel S
    J Chem Phys; 2016 Feb; 144(5):054309. PubMed ID: 26851923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemistry in the strong coupling regime: A trajectory surface hopping scheme.
    Fregoni J; Corni S; Persico M; Granucci G
    J Comput Chem; 2020 Sep; 41(23):2033-2044. PubMed ID: 32609934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry.
    Luk HL; Feist J; Toppari JJ; Groenhof G
    J Chem Theory Comput; 2017 Sep; 13(9):4324-4335. PubMed ID: 28749690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavity-Modified Chemiluminescent Reaction of Dioxetane.
    Gudem M; Kowalewski M
    J Phys Chem A; 2023 Nov; 127(45):9483-9494. PubMed ID: 37845803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.