These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37643148)

  • 1. Reversal of Band-Ordering Leads to High Hole Mobility in Strained
    Rudra S; Rao D; Poncé S; Saha B
    Nano Lett; 2023 Sep; 23(17):8211-8217. PubMed ID: 37643148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dominant Scattering Mechanisms in Limiting the Electron Mobility of Scandium Nitride.
    Rudra S; Rao D; Poncé S; Saha B
    Nano Lett; 2024 Sep; 24(37):11529-11536. PubMed ID: 39240254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Route to High Hole Mobility in GaN via Reversal of Crystal-Field Splitting.
    Poncé S; Jena D; Giustino F
    Phys Rev Lett; 2019 Aug; 123(9):096602. PubMed ID: 31524479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain engineering of polar optical phonon scattering mechanism - an effective way to optimize the power-factor and lattice thermal conductivity of ScN.
    Panneerselvam IR; Kim MH; Baldo C; Wang Y; Sahasranaman M
    Phys Chem Chem Phys; 2021 Oct; 23(40):23288-23302. PubMed ID: 34632991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polar Semiconducting Scandium Nitride as an Infrared Plasmon and Phonon-Polaritonic Material.
    Maurya KC; Rao D; Acharya S; Rao P; Pillai AIK; Selvaraja SK; Garbrecht M; Saha B
    Nano Lett; 2022 Jul; 22(13):5182-5190. PubMed ID: 35713183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Enhancement of Hole Mobility for 4H-Silicon Carbide through Suppressing Interband Electron-Phonon Scattering.
    Sun J; Li S; Tong Z; Shao C; An M; Zhu X; Zhang C; Chen X; Wang R; Xiong Y; Frauenheim T; Liu X
    Nano Lett; 2024 Aug; 24(34):10569-10576. PubMed ID: 39106059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Carrier Transport Performance of Monolayer Hafnium Disulphide by Strain Engineering.
    Chung YF; Chang ST
    Nanomaterials (Basel); 2024 Aug; 14(17):. PubMed ID: 39269082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Electron Mobility of ScN Films Grown on α-Al₂O₃(1 1 ¯ 02) Substrates.
    Ohgaki T; Sakaguchi I; Ohashi N
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlayer Engineering of Band Gap and Hole Mobility in p-Type Oxide SnO.
    Hu Y; Schlom D; Datta S; Cho K
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25670-25679. PubMed ID: 35609177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient calculation of carrier scattering rates from first principles.
    Ganose AM; Park J; Faghaninia A; Woods-Robinson R; Persson KA; Jain A
    Nat Commun; 2021 Apr; 12(1):2222. PubMed ID: 33850113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of phonon-limited mobility in two-dimensional metal dichalcogenides.
    Chang H; Wang H; Song KK; Zhong M; Shi LB; Qian P
    J Phys Condens Matter; 2021 Oct; 34(1):. PubMed ID: 34714257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study of phase-dependent carrier transport mechanism for MASnI
    Li M; Fei J; Zhang X; Li J; Tong C; Long M
    J Phys Condens Matter; 2024 Jul; 36(42):. PubMed ID: 38976979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg
    Mao J; Shuai J; Song S; Wu Y; Dally R; Zhou J; Liu Z; Sun J; Zhang Q; Dela Cruz C; Wilson S; Pei Y; Singh DJ; Chen G; Chu CW; Ren Z
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10548-10553. PubMed ID: 28923974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-induced enhancement of thermoelectric performance of TiS
    Li G; Yao K; Gao G
    Nanotechnology; 2018 Jan; 29(1):015204. PubMed ID: 29125467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biaxial strain improving carrier mobility for inorganic perovskite:
    Cao S; Su Y; Song KK; Qian P; Yan Y; Shi LB
    J Phys Condens Matter; 2022 Dec; 35(5):. PubMed ID: 36395506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials.
    Poncé S; Li W; Reichardt S; Giustino F
    Rep Prog Phys; 2020 Mar; 83(3):036501. PubMed ID: 31923906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widely tunable carrier mobility of boron nitride-embedded graphene.
    Wang J; Zhao R; Liu Z; Liu Z
    Small; 2013 Apr; 9(8):1373-8. PubMed ID: 23512736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of strain on the thermoelectric properties of silicon: an ab initio study.
    Hinsche NF; Mertig I; Zahn P
    J Phys Condens Matter; 2011 Jul; 23(29):295502. PubMed ID: 21737867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delocalized Impurity Phonon Induced Electron-Hole Recombination in Doped Semiconductors.
    Zhang L; Zheng Q; Xie Y; Lan Z; Prezhdo OV; Saidi WA; Zhao J
    Nano Lett; 2018 Mar; 18(3):1592-1599. PubMed ID: 29393653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.