BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37643645)

  • 1. A mechanistic computational framework to investigate the hemodynamic fingerprint of the blood oxygenation level-dependent signal.
    Báez-Yáñez MG; Siero JCW; Petridou N
    NMR Biomed; 2023 Dec; 36(12):e5026. PubMed ID: 37643645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fully synthetic three-dimensional human cerebrovascular model based on histological characteristics to investigate the hemodynamic fingerprint of the layer BOLD fMRI signal formation.
    Báez-Yáñez MG; Schellekens W; Bhogal AA; Roefs ECA; van Osch MJP; Siero JCW; Petridou N
    bioRxiv; 2024 May; ():. PubMed ID: 38826311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
    Archila-Meléndez ME; Sorg C; Preibisch C
    Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
    Kim SG; Ogawa S
    J Cereb Blood Flow Metab; 2012 Jul; 32(7):1188-206. PubMed ID: 22395207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking brain vascular physiology to hemodynamic response in ultra-high field MRI.
    Uludağ K; Blinder P
    Neuroimage; 2018 Mar; 168():279-295. PubMed ID: 28254456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches.
    Yablonskiy DA; Sukstanskii AL; He X
    NMR Biomed; 2013 Aug; 26(8):963-86. PubMed ID: 22927123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting-state BOLD functional connectivity depends on the heterogeneity of capillary transit times in the human brain A combined lesion and simulation study about the influence of blood flow response timing.
    Schneider SC; Archila-Meléndez ME; Göttler J; Kaczmarz S; Zott B; Priller J; Kallmayer M; Zimmer C; Sorg C; Preibisch C
    Neuroimage; 2022 Jul; 255():119208. PubMed ID: 35427773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the hemodynamic response to brain activation.
    Buxton RB; Uludağ K; Dubowitz DJ; Liu TT
    Neuroimage; 2004; 23 Suppl 1():S220-33. PubMed ID: 15501093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans.
    Huppert TJ; Hoge RD; Diamond SG; Franceschini MA; Boas DA
    Neuroimage; 2006 Jan; 29(2):368-82. PubMed ID: 16303317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging.
    Chen Z; Calhoun V
    BMC Med Imaging; 2012 Apr; 12():8. PubMed ID: 22524545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically informed dynamic causal modeling of fMRI data.
    Havlicek M; Roebroeck A; Friston K; Gardumi A; Ivanov D; Uludag K
    Neuroimage; 2015 Nov; 122():355-72. PubMed ID: 26254113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological modeling of the BOLD signal and implications for effective connectivity: A primer.
    Uludağ K
    Neuroimage; 2023 Aug; 277():120249. PubMed ID: 37356779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamical model of the laminar BOLD response.
    Havlicek M; Uludağ K
    Neuroimage; 2020 Jan; 204():116209. PubMed ID: 31546051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T.
    Huber L; Goense J; Kennerley AJ; Ivanov D; Krieger SN; Lepsien J; Trampel R; Turner R; Möller HE
    Neuroimage; 2014 Aug; 97():349-62. PubMed ID: 24742920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect sizes of BOLD CVR, resting-state signal fluctuations and time delay measures for the assessment of hemodynamic impairment in carotid occlusion patients.
    De Vis JB; Bhogal AA; Hendrikse J; Petersen ET; Siero JCW
    Neuroimage; 2018 Oct; 179():530-539. PubMed ID: 29913284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arterial impulse model for the BOLD response to brief neural activation.
    Kim JH; Ress D
    Neuroimage; 2016 Jan; 124(Pt A):394-408. PubMed ID: 26363350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the depth-dependent VASO and BOLD responses in human primary visual cortex.
    Akbari A; Bollmann S; Ali TS; Barth M
    Hum Brain Mapp; 2023 Feb; 44(2):710-726. PubMed ID: 36189837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is optical imaging spectroscopy a viable measurement technique for the investigation of the negative BOLD phenomenon? A concurrent optical imaging spectroscopy and fMRI study at high field (7 T).
    Kennerley AJ; Mayhew JE; Boorman L; Zheng Y; Berwick J
    Neuroimage; 2012 May; 61(1):10-20. PubMed ID: 22440642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal.
    Griffeth VE; Buxton RB
    Neuroimage; 2011 Sep; 58(1):198-212. PubMed ID: 21669292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMR
    Huber L; Uludağ K; Möller HE
    Neuroimage; 2019 Aug; 197():742-760. PubMed ID: 28736310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.