These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37643704)

  • 21. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China.
    Yang H; Song X; Zhang X; Lu B; Yang D; Li B
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45867-45878. PubMed ID: 33884548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards new carbon-neutral food systems: Combining carbon capture and utilization with microbial protein production.
    Van Peteghem L; Sakarika M; Matassa S; Pikaar I; Ganigué R; Rabaey K
    Bioresour Technol; 2022 Apr; 349():126853. PubMed ID: 35176463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrification of New Zealand transport: Environmental impacts and role of renewable energy.
    Reguyal F; Wang K; Sarmah AK
    Sci Total Environ; 2023 Oct; 894():164936. PubMed ID: 37343862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Life Cycle Prediction Assessment of Energy Saving and New Energy Vehicles for 2035].
    Fu P; Lan LB; Chen Y; Hao Z; Xing YX; Cai X; Zhang CM; Chen YS
    Huan Jing Ke Xue; 2023 Apr; 44(4):2365-2374. PubMed ID: 37040985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Korea (Republic of).
    Choi Y; Rhee SW
    Waste Manag; 2020 Apr; 106():261-270. PubMed ID: 32241694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Life cycle CO
    Yu R; Cong L; Hui Y; Zhao D; Yu B
    Sci Total Environ; 2022 Jun; 826():154102. PubMed ID: 35218846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of end-of-life electric vehicle batteries in China: Future scenarios and economic benefits.
    Jiang S; Zhang L; Hua H; Liu X; Wu H; Yuan Z
    Waste Manag; 2021 Nov; 135():70-78. PubMed ID: 34478950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal analysis of the future carbon footprint of solar electricity in the United States by a dynamic life cycle assessment.
    Lu J; Tang J; Shan R; Li G; Rao P; Zhang N
    iScience; 2023 Mar; 26(3):106188. PubMed ID: 36879802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects.
    Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F
    Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.
    Zimmermann BM; Dura H; Baumann MJ; Weil MR
    Integr Environ Assess Manag; 2015 Jul; 11(3):425-34. PubMed ID: 25891858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution.
    Wang S; Yu J
    Waste Manag Res; 2021 Jan; 39(1):156-164. PubMed ID: 33100173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Criticality Assessment of the Life Cycle of Passenger Vehicles Produced in China.
    Sun X; Bach V; Finkbeiner M; Yang J
    Circ Econ Sustain; 2021; 1(1):435-455. PubMed ID: 34888549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The inharmonious mechanism of CO
    Wang L; Yu Y; Huang K; Zhang Z; Li X
    J Environ Manage; 2020 Nov; 274():111236. PubMed ID: 32827870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decentralized energy in flexible energy system: Life cycle environmental impacts in Belgium.
    Huber D; Costa D; Felice A; Valkering P; Coosemans T; Messagie M
    Sci Total Environ; 2023 Aug; 886():163882. PubMed ID: 37160185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.
    Dunn JB; Gaines L; Sullivan J; Wang MQ
    Environ Sci Technol; 2012 Nov; 46(22):12704-10. PubMed ID: 23075406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles.
    Cox B; Mutel CL; Bauer C; Mendoza Beltran A; van Vuuren DP
    Environ Sci Technol; 2018 Apr; 52(8):4989-4995. PubMed ID: 29570287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry.
    Wang S; Yu J
    Waste Manag Res; 2021 Jun; 39(6):818-827. PubMed ID: 32883186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.