These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37643999)

  • 41. Igneous processes in the small bodies of the Solar System II: Small satellites and dwarf planets.
    Leone G; Tanaka H
    iScience; 2024 May; 27(5):109613. PubMed ID: 38638563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isotopic anomalies in extraterrestrial grains.
    Ireland TR
    J R Soc West Aust; 1996 Mar; 79 Pt 1():43-50. PubMed ID: 11541324
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solar nebula heterogeneity in p-process samarium and neodymium isotopes.
    Andreasen R; Sharma M
    Science; 2006 Nov; 314(5800):806-9. PubMed ID: 17023612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Primitive Solar System materials and Earth share a common initial (142)Nd abundance.
    Bouvier A; Boyet M
    Nature; 2016 Sep; 537(7620):399-402. PubMed ID: 27629644
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Young chondrules in CB chondrites from a giant impact in the early Solar System.
    Krot AN; Amelin Y; Cassen P; Meibom A
    Nature; 2005 Aug; 436(7053):989-92. PubMed ID: 16107841
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Short-lived nuclides in hibonite grains from Murchison: evidence for solar system evolution.
    Marhas KK; Goswami JN; Davis AM
    Science; 2002 Dec; 298(5601):2182-5. PubMed ID: 12481135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk.
    Trinquier A; Elliott T; Ulfbeck D; Coath C; Krot AN; Bizzarro M
    Science; 2009 Apr; 324(5925):374-6. PubMed ID: 19372428
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chondrules as direct thermochemical sensors of solar protoplanetary disk gas.
    Libourel G; Portail M
    Sci Adv; 2018 Jul; 4(7):eaar3321. PubMed ID: 30009256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.
    Kuga M; Marty B; Marrocchi Y; Tissandier L
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):7129-34. PubMed ID: 26039983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Short time interval for condensation of high-temperature silicates in the solar accretion disk.
    Luu TH; Young ED; Gounelle M; Chaussidon M
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1298-303. PubMed ID: 25605942
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Core formation in planetesimals triggered by permeable flow.
    Yoshino T; Walter MJ; Katsura T
    Nature; 2003 Mar; 422(6928):154-7. PubMed ID: 12634783
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Early aqueous activity on primitive meteorite parent bodies.
    Endress M; Zinner E; Bischoff A
    Nature; 1996 Feb; 379(6567):701-3. PubMed ID: 8602215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Incorporation of short-lived (10)Be in a calcium-aluminum-rich inclusion from the allende meteorite.
    McKeegan KD; Chaussidon M; Robert F
    Science; 2000 Aug; 289(5483):1334-7. PubMed ID: 10958776
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A non-terrestrial 16O-rich isotopic composition for the protosolar nebula.
    Hashizume K; Chaussidon M
    Nature; 2005 Mar; 434(7033):619-22. PubMed ID: 15800617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combined mass-dependent and nucleosynthetic isotope variations in refractory inclusions and their mineral separates to determine their original Fe isotope compositions.
    Shollenberger QR; Wittke A; Render J; Mane P; Schuth S; Weyer S; Gussone N; Wadhwa M; Brennecka GA
    Geochim Cosmochim Acta; 2019 Oct; 263():215-234. PubMed ID: 33353988
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NEW INSIGHT INTO THE SOLAR SYSTEM'S TRANSITION DISK PHASE PROVIDED BY THE METAL-RICH CARBONACEOUS CHONDRITE ISHEYEVO.
    Morris MA; Garvie LAJ; Knauth LP
    Astrophys J Lett; 2015 Mar; 801(2):. PubMed ID: 30705746
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206.
    Tatsumoto M; Knight RJ; Allegre CJ
    Science; 1973 Jun; 180(4092):1279-83. PubMed ID: 17759123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Trachyandesitic volcanism in the early Solar System.
    Bischoff A; Horstmann M; Barrat JA; Chaussidon M; Pack A; Herwartz D; Ward D; Vollmer C; Decker S
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12689-92. PubMed ID: 25136108
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations.
    Simonelli DP; Pollack JB; McKay CP
    Icarus; 1997 Feb; 125(2):261-80. PubMed ID: 11540163
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The background temperature of the protoplanetary disk within the first four million years of the Solar System.
    Schrader DL; Fu RR; Desch SJ; Davidson J
    Earth Planet Sci Lett; 2018 Dec; 504():30-37. PubMed ID: 31708587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.