BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37644047)

  • 1. Estimation and mapping of soil texture content based on unmanned aerial vehicle hyperspectral imaging.
    Song Q; Gao X; Song Y; Li Q; Chen Z; Li R; Zhang H; Cai S
    Sci Rep; 2023 Aug; 13(1):14097. PubMed ID: 37644047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring.
    Ge X; Wang J; Ding J; Cao X; Zhang Z; Liu J; Li X
    PeerJ; 2019; 7():e6926. PubMed ID: 31110930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping soil available copper content in the mine tailings pond with combined simulated annealing deep neural network and UAV hyperspectral images.
    Zhang Y; Wei L; Lu Q; Zhong Y; Yuan Z; Wang Z; Li Z; Yang Y
    Environ Pollut; 2023 Mar; 320():120962. PubMed ID: 36621716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods.
    Zhang J; Cheng T; Guo W; Xu X; Qiao H; Xie Y; Ma X
    Plant Methods; 2021 May; 17(1):49. PubMed ID: 33941211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of Soil Salt Content and Organic Matter on Arable Land in the Yellow River Delta by Combining UAV Hyperspectral and Landsat-8 Multispectral Imagery.
    Sun M; Li Q; Jiang X; Ye T; Li X; Niu B
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features.
    Sun X; Yang Z; Su P; Wei K; Wang Z; Yang C; Wang C; Qin M; Xiao L; Yang W; Zhang M; Song X; Feng M
    Front Plant Sci; 2023; 14():1158837. PubMed ID: 37063231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inversion of Nitrogen Concentration in Apple Canopy Based on UAV Hyperspectral Images.
    Li W; Zhu X; Yu X; Li M; Tang X; Zhang J; Xue Y; Zhang C; Jiang Y
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil Nutrient Estimation and Mapping in Farmland Based on UAV Imaging Spectrometry.
    Yang X; Bao N; Li W; Liu S; Fu Y; Mao Y
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34204160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery.
    Wu S; Deng L; Guo L; Wu Y
    Plant Methods; 2022 May; 18(1):68. PubMed ID: 35590377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data.
    Wang Y; Zhang X; Sun W; Wang J; Ding S; Liu S
    Sci Total Environ; 2022 Sep; 838(Pt 2):156129. PubMed ID: 35605855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Rice Aboveground Biomass by Combining Canopy Spectral Reflectance and Unmanned Aerial Vehicle-Based Red Green Blue Imagery Data.
    Wang Z; Ma Y; Chen P; Yang Y; Fu H; Yang F; Raza MA; Guo C; Shu C; Sun Y; Yang Z; Chen Z; Ma J
    Front Plant Sci; 2022; 13():903643. PubMed ID: 35712565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms.
    Wei G; Li Y; Zhang Z; Chen Y; Chen J; Yao Z; Lao C; Chen H
    PeerJ; 2020; 8():e9087. PubMed ID: 32377459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tea cultivar classification and biochemical parameter estimation from hyperspectral imagery obtained by UAV.
    Tu Y; Bian M; Wan Y; Fei T
    PeerJ; 2018; 6():e4858. PubMed ID: 29868272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are unmanned aerial vehicle-based hyperspectral imaging and machine learning advancing crop science?
    Matese A; Prince Czarnecki JM; Samiappan S; Moorhead R
    Trends Plant Sci; 2024 Feb; 29(2):196-209. PubMed ID: 37802693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of Agricultural Subsurface Drainage Systems Using Unmanned Aerial Vehicle Imagery and Ground Penetrating Radar.
    Koganti T; Ghane E; Martinez LR; Iversen BV; Allred BJ
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping barrier island soil moisture using a radiative transfer model of hyperspectral imagery from an unmanned aerial system.
    Eon RS; Bachmann CM
    Sci Rep; 2021 Feb; 11(1):3270. PubMed ID: 33558637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of soil heterogeneity on soybean plant development and crop yield evaluated using time-series of UAV and ground-based geophysical imagery.
    Falco N; Wainwright HM; Dafflon B; Ulrich C; Soom F; Peterson JE; Brown JB; Schaettle KB; Williamson M; Cothren JD; Ham RG; McEntire JA; Hubbard SS
    Sci Rep; 2021 Mar; 11(1):7046. PubMed ID: 33782488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of End-Of-Season Tuber Yield and Tuber Set in Potatoes Using In-Season UAV-Based Hyperspectral Imagery and Machine Learning.
    Sun C; Feng L; Zhang Z; Ma Y; Crosby T; Naber M; Wang Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32947919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.