These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37644208)

  • 1. HYFIS vs FMR, LWR and Least squares regression methods in estimating uniaxial compressive strength of evaporitic rocks.
    Hassan MY; Arman H
    Sci Rep; 2023 Aug; 13(1):14101. PubMed ID: 37644208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks.
    Hassan MY; Arman H
    Sci Rep; 2022 Dec; 12(1):20969. PubMed ID: 36470991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive study on the Python-based regression machine learning models for prediction of uniaxial compressive strength using multiple parameters in Charnockite rocks.
    Kochukrishnan S; Krishnamurthy P; D Y; Kaliappan N
    Sci Rep; 2024 Mar; 14(1):7360. PubMed ID: 38548837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive test-based assessment of uniaxial compressive strength and elasticity modulus of intact carbonate rocks using stacking ensemble models.
    Fereidooni D; Karimi Z; Ghasemi F
    PLoS One; 2024; 19(6):e0302944. PubMed ID: 38857272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical models for estimating the uniaxial compressive strength and elastic modulus of rocks from different hardness test methods.
    Teymen A
    Heliyon; 2021 May; 7(5):e06891. PubMed ID: 34007924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting uniaxial compressive strength of rocks using ANN models: Incorporating porosity, compressional wave velocity, and schmidt hammer data.
    Asteris PG; Karoglou M; Skentou AD; Vasconcelos G; He M; Bakolas A; Zhou J; Armaghani DJ
    Ultrasonics; 2024 Jul; 141():107347. PubMed ID: 38781796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the Engineering Properties of Rocks from Textural Characteristics Using Some Soft Computing Approaches.
    Fereidooni D; Sousa L
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Drilling Rate Index Based on Rock Strength Using Regression Analysis.
    Yenice H
    An Acad Bras Cienc; 2019; 91(3):e20181095. PubMed ID: 31618413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Deep Learning Method for the Prediction of the Index Mechanical Properties and Strength Parameters of Marlstone.
    Azarafza M; Hajialilue Bonab M; Derakhshani R
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithological Control on the Estimation of Uniaxial Compressive Strength by the P-Wave Velocity Using Supervised and Unsupervised Learning.
    Rahman T; Sarkar K
    Rock Mech Rock Eng; 2021; 54(6):3175-3191. PubMed ID: 33867648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Tree-Based Techniques for Predicting Unconfined Compressive Strength of Rock Material Employing Non-Destructive and Petrographic Tests.
    Wang Y; Hasanipanah M; Rashid ASA; Le BN; Ulrikh DV
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm.
    Xiong S; Liu Z; Min C; Shi Y; Zhang S; Liu W
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a boosted decision tree regression prediction model as a sustainable tool for compressive strength of environmentally friendly concrete.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65935-65944. PubMed ID: 34327638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study on convolutional neural network and regression analysis to evaluate uniaxial compressive strength of Sandy Dolomite.
    Wang M; Liu W; Liu H; Xie T; Wang Q; Xu W
    Sci Rep; 2024 Apr; 14(1):9880. PubMed ID: 38688970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach.
    Gopukumar D; Ghoshal A; Zhao H
    JMIR Med Inform; 2022 Aug; 10(8):e37578. PubMed ID: 35896038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
    Kim J; Kasabov N
    Neural Netw; 1999 Nov; 12(9):1301-1319. PubMed ID: 12662634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geotechnical data compilation for evaporitic rocks in Abu Dhabi, UAE: A resource for engineers.
    Arman H; Gad A; Abdelghany O; Mahmoud B; Aldahan A; Paramban S; Saima MA
    Data Brief; 2024 Jun; 54():110322. PubMed ID: 38550238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun nanofiber membrane diameter prediction using a combined response surface methodology and machine learning approach.
    Pervez MN; Yeo WS; Mishu MMR; Talukder ME; Roy H; Islam MS; Zhao Y; Cai Y; Stylios GK; Naddeo V
    Sci Rep; 2023 Jun; 13(1):9679. PubMed ID: 37322139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Neuro-Fuzzy Inference System and a Multilayer Perceptron Model Trained with Grey Wolf Optimizer for Predicting Solar Diffuse Fraction.
    Claywell R; Nadai L; Felde I; Ardabili S; Mosavi A
    Entropy (Basel); 2020 Oct; 22(11):. PubMed ID: 33286960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.