BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37644496)

  • 1. Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase.
    Li Y; Zhao X; Yao M; Yang W; Han Y; Liu L; Zhang J; Liu J
    Microb Cell Fact; 2023 Aug; 22(1):165. PubMed ID: 37644496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymes and pathways in microbial production of 2,3-butanediol and 3-acetoin isomers.
    Faria PE; Castro AM; Freire DMG; Mesquita RD
    Crit Rev Biotechnol; 2023 Feb; 43(1):67-81. PubMed ID: 34957872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol.
    Radoš D; Turner DL; Catarino T; Hoffart E; Neves AR; Eikmanns BJ; Blombach B; Santos H
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10573-10583. PubMed ID: 27687994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase.
    Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST
    PLoS One; 2013; 8(10):e76149. PubMed ID: 24098433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and enzymatic characterization of Bacillus subtilis R,R-2,3-butanediol dehydrogenase.
    Wang X; Jia L; Ji F
    Biochim Biophys Acta Gen Subj; 2023 Apr; 1867(4):130326. PubMed ID: 36781054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from Corynebacterium crenatum SYPA5-5.
    Zhao X; Zhang X; Rao Z; Bao T; Li X; Xu M; Yang T; Yang S
    Lett Appl Microbiol; 2015 Dec; 61(6):573-9. PubMed ID: 26393961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method.
    Zhang X; Han R; Bao T; Zhao X; Li X; Zhu M; Yang T; Xu M; Shao M; Zhao Y; Rao Z
    Microb Cell Fact; 2019 Aug; 18(1):128. PubMed ID: 31387595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2,3-Butanediol catabolism in Pseudomonas aeruginosa PAO1.
    Liu Q; Liu Y; Kang Z; Xiao D; Gao C; Xu P; Ma C
    Environ Microbiol; 2018 Nov; 20(11):3927-3940. PubMed ID: 30058099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects.
    Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST
    Crit Rev Biotechnol; 2017 Dec; 37(8):990-1005. PubMed ID: 28423947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30.
    Zhang L; Xu Q; Peng X; Xu B; Wu Y; Yang Y; Sun S; Hu K; Shen Y
    J Ind Microbiol Biotechnol; 2014 Sep; 41(9):1319-27. PubMed ID: 24981852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis.
    Liu Z; Qin J; Gao C; Hua D; Ma C; Li L; Wang Y; Xu P
    Bioresour Technol; 2011 Nov; 102(22):10741-4. PubMed ID: 21945208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
    Zhang L; Xu Q; Zhan S; Li Y; Lin H; Sun S; Sha L; Hu K; Guan X; Shen Y
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1175-84. PubMed ID: 23666479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient (3R)-Acetoin Production from
    Guo Z; Zhao X; He Y; Yang T; Gao H; Li G; Chen F; Sun M; Lee JK; Zhang L
    J Microbiol Biotechnol; 2017 Jan; 27(1):92-100. PubMed ID: 27713210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241.
    Zhang L; Guo Z; Chen J; Xu Q; Lin H; Hu K; Guan X; Shen Y
    Sci Rep; 2016 Jan; 6():19257. PubMed ID: 26753612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production.
    Tong YJ; Ji XJ; Shen MQ; Liu LG; Nie ZK; Huang H
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):637-47. PubMed ID: 26428232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of acetoin to 2,3-butanediol: Assessment of plant and microbial biocatalysts.
    Javidnia K; Faghih-Mirzaei E; Miri R; Attarroshan M; Zomorodian K
    Res Pharm Sci; 2016 Jul; 11(4):349-54. PubMed ID: 27651816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereochemical applications of the expression of the L-2,3-butanediol dehydrogenase gene in Escherichia coli.
    Ui S; Takusagawa Y; Ohtsuki T; Mimura A; Ohkuma M; Kudo T
    Lett Appl Microbiol; 2001 Feb; 32(2):93-8. PubMed ID: 11169050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and Characterization of (2R,3R)-2,3-Butanediol Dehydrogenase of the Human Pathogen Neisseria gonorrhoeae FA1090 Produced in Escherichia coli.
    Tang W; Lian C; Si Y; Chang J
    Mol Biotechnol; 2021 Jun; 63(6):491-501. PubMed ID: 33763825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance.
    Liang K; Shen CR
    Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal design of a simulated-moving-bed chromatographic process for high-purity separation of acetoin from 2,3-butanediol in a continuous mode.
    Lee CG; Jo CY; Song YJ; Park H; Mun S
    J Chromatogr A; 2019 Dec; 1607():460394. PubMed ID: 31400841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.