These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37644496)

  • 21. Properties of 2,3-Butanediol Dehydrogenases from Lactococcus lactis subsp. lactis in Relation to Citrate Fermentation.
    Crow VL
    Appl Environ Microbiol; 1990 Jun; 56(6):1656-65. PubMed ID: 16348209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis.
    Zhang X; Bao T; Rao Z; Yang T; Xu Z; Yang S; Li H
    PLoS One; 2014; 9(3):e91187. PubMed ID: 24608678
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of a chiral acetoinic compound from diacetyl by Escherichia coli expressing meso-2,3-butanediol dehydrogenase.
    Ui S; Mimura A; Ohkuma M; Kudo T
    Lett Appl Microbiol; 1999 Jun; 28(6):457-60. PubMed ID: 10389264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis.
    He Y; Chen F; Sun M; Gao H; Guo Z; Lin H; Chen J; Jin W; Yang Y; Zhang L; Yuan J
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29562693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production.
    Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y
    J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol.
    Kou M; Cui Z; Fu J; Dai W; Wang Z; Chen T
    Microb Cell Fact; 2022 Jul; 21(1):150. PubMed ID: 35879766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotechnological production of chiral acetoin.
    Meng W; Ma C; Xu P; Gao C
    Trends Biotechnol; 2022 Aug; 40(8):958-973. PubMed ID: 35210122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli.
    Ui S; Takusagawa Y; Sato T; Ohtsuki T; Mimura A; Ohkuma M; Kudo T
    Lett Appl Microbiol; 2004; 39(6):533-7. PubMed ID: 15548307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase.
    Nicholson WL
    Appl Environ Microbiol; 2008 Nov; 74(22):6832-8. PubMed ID: 18820069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of
    Lv X; Dai L; Bai F; Wang Z; Zhang L; Shen Y
    Bioresour Bioprocess; 2016; 3(1):52. PubMed ID: 27942437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.
    Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L
    Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli.
    Liang K; Shen CR
    J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1605-1612. PubMed ID: 29116429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases.
    Otagiri M; Ui S; Takusagawa Y; Ohtsuki T; Kurisu G; Kusunoki M
    FEBS Lett; 2010 Jan; 584(1):219-23. PubMed ID: 19941855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol.
    Qiu Y; Zhang J; Li L; Wen Z; Nomura CT; Wu S; Chen S
    Biotechnol Biofuels; 2016; 9():117. PubMed ID: 27257436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and functional role of Saccharomyces cerevisiae 2,3-butanediol dehydrogenase.
    González E; Fernández MR; Larroy C; Parés X; Biosca JA
    Chem Biol Interact; 2001 Jan; 130-132(1-3):425-34. PubMed ID: 11306064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial production of 2,3-butanediol by a newly-isolated strain of Serratia marcescens.
    Shi L; Gao S; Yu Y; Yang H
    Biotechnol Lett; 2014 May; 36(5):969-73. PubMed ID: 24375234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase.
    Zhang X; Zhang R; Yang T; Zhang J; Xu M; Li H; Xu Z; Rao Z
    World J Microbiol Biotechnol; 2013 Oct; 29(10):1783-9. PubMed ID: 23549901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical.
    Li L; Zhang L; Li K; Wang Y; Gao C; Han B; Ma C; Xu P
    Biotechnol Biofuels; 2013 Aug; 6(1):123. PubMed ID: 23981315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae.
    Chen C; Wei D; Shi J; Wang M; Hao J
    Appl Microbiol Biotechnol; 2014 May; 98(10):4603-13. PubMed ID: 24535253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene.
    González E; Fernández MR; Larroy C; Solà L; Pericàs MA; Parés X; Biosca JA
    J Biol Chem; 2000 Nov; 275(46):35876-85. PubMed ID: 10938079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.