These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37645037)

  • 1. Leak Proof PDBBind: A Reorganized Dataset of Protein-Ligand Complexes for More Generalizable Binding Affinity Prediction.
    Li J; Guan X; Zhang O; Sun K; Wang Y; Bagni D; Head-Gordon T
    ArXiv; 2024 May; ():. PubMed ID: 37645037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PharmRF: A machine-learning scoring function to identify the best protein-ligand complexes for structure-based pharmacophore screening with high enrichments.
    Kumar SP; Dixit NY; Patel CN; Rawal RM; Pandya HA
    J Comput Chem; 2022 May; 43(12):847-863. PubMed ID: 35301752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina.
    Tanchuk VY; Tanin VO; Vovk AI; Poda G
    Chem Biol Drug Des; 2016 Apr; 87(4):618-25. PubMed ID: 26643167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving protein-ligand docking results using the Semiempirical quantum mechanics: testing on the PDBbind 2016 core set.
    Mohebbinia Z; Firouzi R; Karimi-Jafari MH
    J Biomol Struct Dyn; 2024 Jan; ():1-11. PubMed ID: 38165642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of cross-docked poses on performance of machine learning classifier for protein-ligand binding pose prediction.
    Shen C; Hu X; Gao J; Zhang X; Zhong H; Wang Z; Xu L; Kang Y; Cao D; Hou T
    J Cheminform; 2021 Oct; 13(1):81. PubMed ID: 34656169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Scoring Function for Molecular Docking Based on AutoDock and AutoDock Vina.
    Tanchuk VY; Tanin VO; Vovk AI; Poda G
    Curr Drug Discov Technol; 2015; 12(3):170-8. PubMed ID: 26302746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions.
    Shen C; Hu Y; Wang Z; Zhang X; Zhong H; Wang G; Yao X; Xu L; Cao D; Hou T
    Brief Bioinform; 2021 Jan; 22(1):497-514. PubMed ID: 31982914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes.
    Wang R; Lu Y; Fang X; Wang S
    J Chem Inf Comput Sci; 2004; 44(6):2114-25. PubMed ID: 15554682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XLPFE: A Simple and Effective Machine Learning Scoring Function for Protein-Ligand Scoring and Ranking.
    Dong L; Qu X; Wang B
    ACS Omega; 2022 Jun; 7(25):21727-21735. PubMed ID: 35785279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical scoring functions for docking are unable to exploit large volumes of structural and interaction data.
    Li H; Peng J; Sidorov P; Leung Y; Leung KS; Wong MH; Lu G; Ballester PJ
    Bioinformatics; 2019 Oct; 35(20):3989-3995. PubMed ID: 30873528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning from Docked Ligands: Ligand-Based Features Rescue Structure-Based Scoring Functions When Trained on Docked Poses.
    Boyles F; Deane CM; Morris GM
    J Chem Inf Model; 2022 Nov; 62(22):5329-5341. PubMed ID: 34469150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions.
    Li Y; Yang J
    J Chem Inf Model; 2017 Apr; 57(4):1007-1012. PubMed ID: 28358210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving classical scoring functions using random forest: The non-additivity of free energy terms' contributions in binding.
    Afifi K; Al-Sadek AF
    Chem Biol Drug Des; 2018 Aug; 92(2):1429-1434. PubMed ID: 29655201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function Dependent on the Training Set?
    Su M; Feng G; Liu Z; Li Y; Wang R
    J Chem Inf Model; 2020 Mar; 60(3):1122-1136. PubMed ID: 32085675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S3. PubMed ID: 25916860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.