These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37645037)

  • 21. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The PDBbind database: methodologies and updates.
    Wang R; Fang X; Lu Y; Yang CY; Wang S
    J Med Chem; 2005 Jun; 48(12):4111-9. PubMed ID: 15943484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes.
    Zilian D; Sotriffer CA
    J Chem Inf Model; 2013 Aug; 53(8):1923-33. PubMed ID: 23705795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning from the ligand: using ligand-based features to improve binding affinity prediction.
    Boyles F; Deane CM; Morris GM
    Bioinformatics; 2020 Feb; 36(3):758-764. PubMed ID: 31598630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2022; 29(14):2438-2455. PubMed ID: 34365938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking.
    Ballester PJ; Mitchell JB
    Bioinformatics; 2010 May; 26(9):1169-75. PubMed ID: 20236947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. istar: a web platform for large-scale protein-ligand docking.
    Li H; Leung KS; Ballester PJ; Wong MH
    PLoS One; 2014; 9(1):e85678. PubMed ID: 24475049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding Affinity Prediction by Pairwise Function Based on Neural Network.
    Zhu F; Zhang X; Allen JE; Jones D; Lightstone FC
    J Chem Inf Model; 2020 Jun; 60(6):2766-2772. PubMed ID: 32338892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks.
    Kwon Y; Shin WH; Ko J; Lee J
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set.
    Li Y; Liu Z; Li J; Han L; Liu J; Zhao Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1700-16. PubMed ID: 24716849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PDB-wide collection of binding data: current status of the PDBbind database.
    Liu Z; Li Y; Han L; Li J; Liu J; Zhao Z; Nie W; Liu Y; Wang R
    Bioinformatics; 2015 Feb; 31(3):405-12. PubMed ID: 25301850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation.
    Grudinin S; Kadukova M; Eisenbarth A; Marillet S; Cazals F
    J Comput Aided Mol Des; 2016 Sep; 30(9):791-804. PubMed ID: 27718029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving ligand-ranking of AutoDock Vina by changing the empirical parameters.
    Pham TNH; Nguyen TH; Tam NM; Y Vu T; Pham NT; Huy NT; Mai BK; Tung NT; Pham MQ; V Vu V; Ngo ST
    J Comput Chem; 2022 Jan; 43(3):160-169. PubMed ID: 34716930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction.
    Li H; Peng J; Leung Y; Leung KS; Wong MH; Lu G; Ballester PJ
    Biomolecules; 2018 Mar; 8(1):. PubMed ID: 29538331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein-ligand binding affinity prediction exploiting sequence constituent homology.
    Abdel-Rehim A; Orhobor O; Hang L; Ni H; King RD
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37572302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative assessment of scoring functions on a diverse test set.
    Cheng T; Li X; Li Y; Liu Z; Wang R
    J Chem Inf Model; 2009 Apr; 49(4):1079-93. PubMed ID: 19358517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iterative Knowledge-Based Scoring Functions Derived from Rigid and Flexible Decoy Structures: Evaluation with the 2013 and 2014 CSAR Benchmarks.
    Yan C; Grinter SZ; Merideth BR; Ma Z; Zou X
    J Chem Inf Model; 2016 Jun; 56(6):1013-21. PubMed ID: 26389744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.