These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37645037)

  • 41. The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2021 Oct; 28(34):7006-7022. PubMed ID: 33568025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cross-Mapping of Protein - Ligand Binding Data Between ChEMBL and PDBbind.
    Liu Z; Li J; Liu J; Liu Y; Nie W; Han L; Li Y; Wang R
    Mol Inform; 2015 Aug; 34(8):568-76. PubMed ID: 27490502
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A point cloud-based deep learning strategy for protein-ligand binding affinity prediction.
    Wang Y; Wu S; Duan Y; Huang Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849569
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing How Residual Errors of Scoring Functions Correlate to Ligand Structural Features.
    Shulga DA; Shaimardanov AR; Ivanov NN; Palyulin VA
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors.
    Kumar S; Kim MH
    J Cheminform; 2021 Mar; 13(1):28. PubMed ID: 33766140
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative Assessment of Seven Docking Programs on a Nonredundant Metalloprotein Subset of the PDBbind Refined.
    Çınaroğlu SS; Timuçin E
    J Chem Inf Model; 2019 Sep; 59(9):3846-3859. PubMed ID: 31460757
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.
    Rezaei MA; Li Y; Wu D; Li X; Li C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):407-417. PubMed ID: 33360998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Physics-Guided Neural Network for Predicting Protein-Ligand Binding Free Energy: From Host-Guest Systems to the PDBbind Database.
    Cain S; Risheh A; Forouzesh N
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel method for protein-ligand binding affinity prediction and the related descriptors exploration.
    Li S; Xi L; Wang C; Li J; Lei B; Liu H; Yao X
    J Comput Chem; 2009 Apr; 30(6):900-9. PubMed ID: 18785151
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Public Data Set of Protein-Ligand Dissociation Kinetic Constants for Quantitative Structure-Kinetics Relationship Studies.
    Liu H; Su M; Lin HX; Wang R; Li Y
    ACS Omega; 2022 Jun; 7(22):18985-18996. PubMed ID: 35694511
    [TBL] [Abstract][Full Text] [Related]  

  • 52. OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein-Ligand Binding Affinity Prediction.
    Zheng L; Fan J; Mu Y
    ACS Omega; 2019 Oct; 4(14):15956-15965. PubMed ID: 31592466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines.
    Koppisetty CA; Frank M; Kemp GJ; Nyholm PG
    J Chem Inf Model; 2013 Oct; 53(10):2559-70. PubMed ID: 24050538
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties.
    Kundu I; Paul G; Banerjee R
    RSC Adv; 2018 Mar; 8(22):12127-12137. PubMed ID: 35539386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An ensemble-based approach to estimate confidence of predicted protein-ligand binding affinity values.
    Rayka M; Mirzaei M; Mohammad Latifi A
    Mol Inform; 2024 Apr; 43(4):e202300292. PubMed ID: 38358080
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PLANET: A Multi-objective Graph Neural Network Model for Protein-Ligand Binding Affinity Prediction.
    Zhang X; Gao H; Wang H; Chen Z; Zhang Z; Chen X; Li Y; Qi Y; Wang R
    J Chem Inf Model; 2024 Apr; 64(7):2205-2220. PubMed ID: 37319418
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ASFP (Artificial Intelligence based Scoring Function Platform): a web server for the development of customized scoring functions.
    Zhang X; Shen C; Guo X; Wang Z; Weng G; Ye Q; Wang G; He Q; Yang B; Cao D; Hou T
    J Cheminform; 2021 Feb; 13(1):6. PubMed ID: 33541407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions.
    Søndergaard CR; Garrett AE; Carstensen T; Pollastri G; Nielsen JE
    J Med Chem; 2009 Sep; 52(18):5673-84. PubMed ID: 19711919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening.
    Chen L; Cruz A; Ramsey S; Dickson CJ; Duca JS; Hornak V; Koes DR; Kurtzman T
    PLoS One; 2019; 14(8):e0220113. PubMed ID: 31430292
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.