These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37645092)

  • 1. Local invertibility and sensitivity of atomic structure-feature mappings.
    Pozdnyakov SN; Zhang L; Ortner C; Csányi G; Ceriotti M
    Open Res Eur; 2021; 1():126. PubMed ID: 37645092
    [No Abstract]   [Full Text] [Related]  

  • 2. Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties.
    Nigam J; Willatt MJ; Ceriotti M
    J Chem Phys; 2022 Jan; 156(1):014115. PubMed ID: 34998321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions" [J. Chem. Phys. 156, 034302 (2022)].
    Pozdnyakov SN; Willatt MJ; Bartók AP; Ortner C; Csányi G; Ceriotti M
    J Chem Phys; 2022 Nov; 157(17):177101. PubMed ID: 36347686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal radial basis for density-based atomic representations.
    Goscinski A; Musil F; Pozdnyakov S; Nigam J; Ceriotti M
    J Chem Phys; 2021 Sep; 155(10):104106. PubMed ID: 34525832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-Inspired Structural Representations for Molecules and Materials.
    Musil F; Grisafi A; Bartók AP; Ortner C; Csányi G; Ceriotti M
    Chem Rev; 2021 Aug; 121(16):9759-9815. PubMed ID: 34310133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified theory of atom-centered representations and message-passing machine-learning schemes.
    Nigam J; Pozdnyakov S; Fraux G; Ceriotti M
    J Chem Phys; 2022 May; 156(20):204115. PubMed ID: 35649823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incompleteness of Atomic Structure Representations.
    Pozdnyakov SN; Willatt MJ; Bartók AP; Ortner C; Csányi G; Ceriotti M
    Phys Rev Lett; 2020 Oct; 125(16):166001. PubMed ID: 33124874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invertibility of the dual energy x-ray data transform.
    Alvarez RE
    Med Phys; 2019 Jan; 46(1):93-103. PubMed ID: 30357850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atom-density representations for machine learning.
    Willatt MJ; Musil F; Ceriotti M
    J Chem Phys; 2019 Apr; 150(15):154110. PubMed ID: 31005079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient implementation of atom-density representations.
    Musil F; Veit M; Goscinski A; Fraux G; Willatt MJ; Stricker M; Junge T; Ceriotti M
    J Chem Phys; 2021 Mar; 154(11):114109. PubMed ID: 33752353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A smooth basis for atomistic machine learning.
    Bigi F; Huguenin-Dumittan KK; Ceriotti M; Manolopoulos DE
    J Chem Phys; 2022 Dec; 157(23):234101. PubMed ID: 36550032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Collective Variables Using Invariant Learned Representations.
    Šípka M; Erlebach A; Grajciar L
    J Chem Theory Comput; 2023 Feb; 19(3):887-901. PubMed ID: 36696574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures.
    Duong VT; Diessner EM; Grazioli G; Martin RW; Butts CT
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive comparison of molecular feature representations for use in predictive modeling.
    Stepišnik T; Škrlj B; Wicker J; Kocev D
    Comput Biol Med; 2021 Mar; 130():104197. PubMed ID: 33429140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constant size descriptors for accurate machine learning models of molecular properties.
    Collins CR; Gordon GJ; von Lilienfeld OA; Yaron DJ
    J Chem Phys; 2018 Jun; 148(24):241718. PubMed ID: 29960361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials.
    Onat B; Ortner C; Kermode JR
    J Chem Phys; 2020 Oct; 153(14):144106. PubMed ID: 33086812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent homology-based descriptor for machine-learning potential of amorphous structures.
    Minamitani E; Obayashi I; Shimizu K; Watanabe S
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating long-range physics in atomic-scale machine learning.
    Grisafi A; Ceriotti M
    J Chem Phys; 2019 Nov; 151(20):204105. PubMed ID: 31779318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.