These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37645148)

  • 1. Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling.
    Bychek A; Hotter C; Plankensteiner D; Ritsch H
    Open Res Eur; 2021; 1():73. PubMed ID: 37645148
    [No Abstract]   [Full Text] [Related]  

  • 2. Superradiance on the millihertz linewidth strontium clock transition.
    Norcia MA; Winchester MN; Cline JR; Thompson JK
    Sci Adv; 2016 Oct; 2(10):e1601231. PubMed ID: 27757423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subnatural Linewidth Superradiant Lasing with Cold ^{88}Sr Atoms.
    Kristensen SL; Bohr E; Robinson-Tait J; Zelevinsky T; Thomsen JW; Müller JH
    Phys Rev Lett; 2023 Jun; 130(22):223402. PubMed ID: 37327424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A steady-state superradiant laser with less than one intracavity photon.
    Bohnet JG; Chen Z; Weiner JM; Meiser D; Holland MJ; Thompson JK
    Nature; 2012 Apr; 484(7392):78-81. PubMed ID: 22481360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultranarrow Superradiant Lasing by Dark Atom-Photon Dressed States.
    Zhang Y; Shan C; Mølmer K
    Phys Rev Lett; 2021 Mar; 126(12):123602. PubMed ID: 33834832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superradiant cooling, trapping, and lasing of dipole-interacting clock atoms.
    Hotter C; Plankensteiner D; Ostermann L; Ritsch H
    Opt Express; 2019 Oct; 27(22):31193-31206. PubMed ID: 31684354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercooling of Atoms in an Optical Resonator.
    Xu M; Jäger SB; Schütz S; Cooper J; Morigi G; Holland MJ
    Phys Rev Lett; 2016 Apr; 116(15):153002. PubMed ID: 27127966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity.
    Temnov VV; Woggon U
    Phys Rev Lett; 2005 Dec; 95(24):243602. PubMed ID: 16384377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superradiant rayleigh scattering and collective atomic recoil lasing in a ring cavity.
    Slama S; Bux S; Krenz G; Zimmermann C; Courteille PW
    Phys Rev Lett; 2007 Feb; 98(5):053603. PubMed ID: 17358857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Umklapp superradiance with a collisionless quantum degenerate Fermi gas.
    Piazza F; Strack P
    Phys Rev Lett; 2014 Apr; 112(14):143003. PubMed ID: 24765951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Frequency Measurement on Superradiant Strontium Clock Transitions.
    Zhang Y; Shan C; Mølmer K
    Phys Rev Lett; 2022 Jan; 128(1):013604. PubMed ID: 35061453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity.
    Westergaard PG; Christensen BT; Tieri D; Matin R; Cooper J; Holland M; Ye J; Thomsen JW
    Phys Rev Lett; 2015 Mar; 114(9):093002. PubMed ID: 25793810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collectively enhanced Ramsey readout by cavity sub- to superradiant transition.
    Bohr EA; Kristensen SL; Hotter C; Schäffer SA; Robinson-Tait J; Thomsen JW; Zelevinsky T; Ritsch H; Müller JH
    Nat Commun; 2024 Feb; 15(1):1084. PubMed ID: 38316781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instability and pulse area quantization in accelerated superradiant atom-cavity systems.
    Greiner C; Wang T; Loftus T; Mossberg TW
    Phys Rev Lett; 2001 Dec; 87(25):253602. PubMed ID: 11736575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical Phase Transitions to Optomechanical Superradiance.
    Jäger SB; Cooper J; Holland MJ; Morigi G
    Phys Rev Lett; 2019 Aug; 123(5):053601. PubMed ID: 31491307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lasing by driven atoms-cavity system in collective strong coupling regime.
    Sawant R; Rangwala SA
    Sci Rep; 2017 Sep; 7(1):11432. PubMed ID: 28900221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation and feasibility study for superradiant lasing in
    Gogyan A; Kazakov G; Bober M; Zawada M
    Opt Express; 2020 Mar; 28(5):6881-6892. PubMed ID: 32225926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rugged mHz-Linewidth Superradiant Laser Driven by a Hot Atomic Beam.
    Liu H; Jäger SB; Yu X; Touzard S; Shankar A; Holland MJ; Nicholson TL
    Phys Rev Lett; 2020 Dec; 125(25):253602. PubMed ID: 33416357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling.
    Kreinberg S; Chow WW; Wolters J; Schneider C; Gies C; Jahnke F; Höfling S; Kamp M; Reitzenstein S
    Light Sci Appl; 2017 Aug; 6(8):e17030. PubMed ID: 30167281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.