BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 37645178)

  • 21. Advanced gut-on-chips for assessing carotenoid absorption, metabolism, and transport.
    Wang H; Xu C; Tan M; Su W
    Crit Rev Food Sci Nutr; 2023 Dec; ():1-19. PubMed ID: 38095598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions.
    Garcia-Gutierrez E; Cotter PD
    Crit Rev Microbiol; 2022 Aug; 48(4):463-488. PubMed ID: 34591726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vitro Morphogenesis and Differentiation of Human Intestinal Epithelium in a Gut-on-a-Chip.
    Shin W; Kim HJ
    Methods Mol Biol; 2023; 2650():197-206. PubMed ID: 37310633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced Organ-on-a-Chip Devices to Investigate Liver Multi-Organ Communication: Focus on Gut, Microbiota and Brain.
    Boeri L; Izzo L; Sardelli L; Tunesi M; Albani D; Giordano C
    Bioengineering (Basel); 2019 Sep; 6(4):. PubMed ID: 31569428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro hepatic steatosis model based on gut-liver-on-a-chip.
    Jeon JW; Lee SH; Kim D; Sung JH
    Biotechnol Prog; 2021 May; 37(3):e3121. PubMed ID: 33393209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors.
    Trujillo-de Santiago G; Flores-Garza BG; Tavares-Negrete JA; Lara-Mayorga IM; González-Gamboa I; Zhang YS; Rojas-Martínez A; Ortiz-López R; Álvarez MM
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gut-on-chip for ecological and causal human gut microbiome research.
    Moossavi S; Arrieta MC; Sanati-Nezhad A; Bishehsari F
    Trends Microbiol; 2022 Aug; 30(8):710-721. PubMed ID: 35190251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic gut-axis-on-a-chip models for pharmacokinetic-based disease models.
    Kim R; Sung JH
    Biomicrofluidics; 2024 May; 18(3):031507. PubMed ID: 38947281
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Hewes SA; Wilson RL; Estes MK; Shroyer NF; Blutt SE; Grande-Allen KJ
    Tissue Eng Part B Rev; 2020 Aug; 26(4):313-326. PubMed ID: 32046599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harnessing Colon Chip Technology to Identify Commensal Bacteria That Promote Host Tolerance to Infection.
    Gazzaniga FS; Camacho DM; Wu M; Silva Palazzo MF; Dinis ALM; Grafton FN; Cartwright MJ; Super M; Kasper DL; Ingber DE
    Front Cell Infect Microbiol; 2021; 11():638014. PubMed ID: 33777849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Biomimetic Human Gut-on-a-Chip for Modeling Drug Metabolism in Intestine.
    Guo Y; Li Z; Su W; Wang L; Zhu Y; Qin J
    Artif Organs; 2018 Dec; 42(12):1196-1205. PubMed ID: 30256442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary exploration of host-microorganism interaction and enteritis treatment with an embedded membrane microfluidic chip of the human intestinal-vascular microsystem.
    Zhao W; Yao Y; Zhang T; Lu H; Zhang X; Zhao L; Chen X; Zhu J; Sui G; Zhao W
    Front Bioeng Biotechnol; 2022; 10():1035647. PubMed ID: 36561041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology.
    Rothbauer M; Bachmann BEM; Eilenberger C; Kratz SRA; Spitz S; Höll G; Ertl P
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33919242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling mucus physiology and pathophysiology in human organs-on-chips.
    Izadifar Z; Sontheimer-Phelps A; Lubamba BA; Bai H; Fadel C; Stejskalova A; Ozkan A; Dasgupta Q; Bein A; Junaid A; Gulati A; Mahajan G; Kim S; LoGrande NT; Naziripour A; Ingber DE
    Adv Drug Deliv Rev; 2022 Dec; 191():114542. PubMed ID: 36179916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic gut-on-a-chip with three-dimensional villi structure.
    Shim KY; Lee D; Han J; Nguyen NT; Park S; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):37. PubMed ID: 28451924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow.
    Kim HJ; Huh D; Hamilton G; Ingber DE
    Lab Chip; 2012 Jun; 12(12):2165-74. PubMed ID: 22434367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip.
    Jeon MS; Choi YY; Mo SJ; Ha JH; Lee YS; Lee HU; Park SD; Shim JJ; Lee JL; Chung BG
    Nano Converg; 2022 Feb; 9(1):8. PubMed ID: 35133522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Robust Longitudinal Co-culture of Obligate Anaerobic Gut Microbiome With Human Intestinal Epithelium in an Anoxic-Oxic Interface-on-a-Chip.
    Shin W; Wu A; Massidda MW; Foster C; Thomas N; Lee DW; Koh H; Ju Y; Kim J; Kim HJ
    Front Bioeng Biotechnol; 2019; 7():13. PubMed ID: 30792981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Establishment of a Modular Anaerobic Human Intestine Chip.
    Jalili-Firoozinezhad S; Bein A; Gazzaniga FS; Fadel CW; Novak R; Ingber DE
    Methods Mol Biol; 2022; 2373():69-85. PubMed ID: 34520007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic Gut-liver chip for reproducing the first pass metabolism.
    Choe A; Ha SK; Choi I; Choi N; Sung JH
    Biomed Microdevices; 2017 Mar; 19(1):4. PubMed ID: 28074384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.