These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 37645178)

  • 41. A body-on-a-chip (BOC) system for studying gut-liver interaction.
    Sung JH
    Methods Cell Biol; 2020; 158():1-10. PubMed ID: 32423644
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bio-Microfabrication of 2D and 3D Biomimetic Gut-on-a-Chip.
    Jang Y; Jung J; Oh J
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763899
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Linkable, Polycarbonate Gut Microbiome-Distal Tumor Chip Platform for Interrogating Cancer Promoting Mechanisms.
    Brasino DSK; Speese SD; Schilling K; Schutt CE; Barton MC
    Adv Sci (Weinh); 2024 Jul; ():e2309220. PubMed ID: 39023197
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.
    Kim HJ; Li H; Collins JJ; Ingber DE
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):E7-15. PubMed ID: 26668389
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organ-on-a-chip models for elucidating the cellular biology of infectious diseases.
    Yokoi F; Deguchi S; Takayama K
    Biochim Biophys Acta Mol Cell Res; 2023 Aug; 1870(6):119504. PubMed ID: 37245539
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pathomimetic modeling of human intestinal diseases and underlying host-gut microbiome interactions in a gut-on-a-chip.
    Shin W; Kim HJ
    Methods Cell Biol; 2018; 146():135-148. PubMed ID: 30037458
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone-on-a-Chip: Biomimetic Models Based on Microfluidic Technologies for Biomedical Applications.
    Kim MK; Paek K; Woo SM; Kim JA
    ACS Biomater Sci Eng; 2023 Jun; 9(6):3058-3073. PubMed ID: 37183366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intestinal Stem Cell-on-Chip to Study Human Host-Microbiota Interaction.
    Siwczak F; Loffet E; Kaminska M; Koceva H; Mahe MM; Mosig AS
    Front Immunol; 2021; 12():798552. PubMed ID: 34938299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organs-on-chips technologies - A guide from disease models to opportunities for drug development.
    Monteduro AG; Rizzato S; Caragnano G; Trapani A; Giannelli G; Maruccio G
    Biosens Bioelectron; 2023 Jul; 231():115271. PubMed ID: 37060819
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Applications of Polymers for Organ-on-Chip Technology in Urology.
    Galateanu B; Hudita A; Biru EI; Iovu H; Zaharia C; Simsensohn E; Costache M; Petca RC; Jinga V
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566836
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lung-on-a-chip: the future of respiratory disease models and pharmacological studies.
    Shrestha J; Razavi Bazaz S; Aboulkheyr Es H; Yaghobian Azari D; Thierry B; Ebrahimi Warkiani M; Ghadiri M
    Crit Rev Biotechnol; 2020 Mar; 40(2):213-230. PubMed ID: 31906727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fish-gut-on-chip: development of a microfluidic bioreactor to study the role of the fish intestine in vitro.
    Drieschner C; Könemann S; Renaud P; Schirmer K
    Lab Chip; 2019 Sep; 19(19):3268-3276. PubMed ID: 31482163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation.
    Kim HJ; Ingber DE
    Integr Biol (Camb); 2013 Sep; 5(9):1130-40. PubMed ID: 23817533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases.
    Wang Y; Wang P; Qin J
    Acc Chem Res; 2021 Sep; 54(18):3550-3562. PubMed ID: 34459199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert.
    Shin W; Kim HJ
    Nat Protoc; 2022 Mar; 17(3):910-939. PubMed ID: 35110737
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An on-chip small intestine-liver model for pharmacokinetic studies.
    Kimura H; Ikeda T; Nakayama H; Sakai Y; Fujii T
    J Lab Autom; 2015 Jun; 20(3):265-73. PubMed ID: 25385717
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human Organs-on-Chips for Virology.
    Tang H; Abouleila Y; Si L; Ortega-Prieto AM; Mummery CL; Ingber DE; Mashaghi A
    Trends Microbiol; 2020 Nov; 28(11):934-946. PubMed ID: 32674988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.