These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37645310)
1. Low-resistivity, high-resolution W-C electrical contacts fabricated by direct-write focused electron beam induced deposition. Orús P; Sigloch F; Sangiao S; De Teresa JM Open Res Eur; 2022; 2():102. PubMed ID: 37645310 [No Abstract] [Full Text] [Related]
2. Comparison between Focused Electron/Ion Beam-Induced Deposition at Room Temperature and under Cryogenic Conditions. De Teresa JM; Orús P; Córdoba R; Philipp P Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766480 [TBL] [Abstract][Full Text] [Related]
3. High Volume-Per-Dose and Low Resistivity of Cobalt Nanowires Grown by Ga Sanz-Martín C; Magén C; De Teresa JM Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31805735 [TBL] [Abstract][Full Text] [Related]
4. Ultra-fast direct growth of metallic micro- and nano-structures by focused ion beam irradiation. Córdoba R; Orús P; Strohauer S; Torres TE; De Teresa JM Sci Rep; 2019 Oct; 9(1):14076. PubMed ID: 31575886 [TBL] [Abstract][Full Text] [Related]
5. Optimization of Pt-C Deposits by Cryo-FIBID: Substantial Growth Rate Increase and Quasi-Metallic Behaviour. Salvador-Porroche A; Sangiao S; Philipp P; Cea P; Teresa JM Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32987887 [TBL] [Abstract][Full Text] [Related]
6. Crystalline Niobium Carbide Superconducting Nanowires Prepared by Focused Ion Beam Direct Writing. Porrati F; Barth S; Sachser R; Dobrovolskiy OV; Seybert A; Frangakis AS; Huth M ACS Nano; 2019 Jun; 13(6):6287-6296. PubMed ID: 31046238 [TBL] [Abstract][Full Text] [Related]
7. Temperature-Dependent Growth Characteristics of Nb- and CoFe-Based Nanostructures by Direct-Write Using Focused Electron Beam-Induced Deposition. Huth M; Porrati F; Gruszka P; Barth S Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31881650 [TBL] [Abstract][Full Text] [Related]
8. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors. Thorman RM; Kumar T P R; Fairbrother DH; Ingólfsson O Beilstein J Nanotechnol; 2015; 6():1904-26. PubMed ID: 26665061 [TBL] [Abstract][Full Text] [Related]
9. Superconducting properties of in-plane W-C nanowires grown by He Orús P; Córdoba R; Hlawacek G; De Teresa JM Nanotechnology; 2021 Feb; 32(8):085301. PubMed ID: 33171446 [TBL] [Abstract][Full Text] [Related]
11. Highly conductive and pure gold nanostructures grown by electron beam induced deposition. Shawrav MM; Taus P; Wanzenboeck HD; Schinnerl M; Stöger-Pollach M; Schwarz S; Steiger-Thirsfeld A; Bertagnolli E Sci Rep; 2016 Sep; 6():34003. PubMed ID: 27666531 [TBL] [Abstract][Full Text] [Related]
12. Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review. Utke I; Michler J; Winkler R; Plank H Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32290292 [TBL] [Abstract][Full Text] [Related]
13. Direct Write of 3D Nanoscale Mesh Objects with Platinum Precursor via Focused Helium Ion Beam Induced Deposition. Belianinov A; Burch MJ; Ievlev A; Kim S; Stanford MG; Mahady K; Lewis BB; Fowlkes JD; Rack PD; Ovchinnikova OS Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32455865 [TBL] [Abstract][Full Text] [Related]
14. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures. Yu JC; Abdel-Rahman MK; Fairbrother DH; McElwee-White L ACS Appl Mater Interfaces; 2021 Oct; 13(41):48333-48348. PubMed ID: 34633789 [TBL] [Abstract][Full Text] [Related]
15. Annealing-Based Electrical Tuning of Cobalt-Carbon Deposits Grown by Focused-Electron-Beam-Induced Deposition. Puydinger Dos Santos MV; Velo MF; Domingos RD; Zhang Y; Maeder X; Guerra-Nuñez C; Best JP; Béron F; Pirota KR; Moshkalev S; Diniz JA; Utke I ACS Appl Mater Interfaces; 2016 Nov; 8(47):32496-32503. PubMed ID: 27933832 [TBL] [Abstract][Full Text] [Related]
16. Room Temperature Direct Electron Beam Lithography in a Condensed Copper Carboxylate. Berger L; Jurczyk J; Madajska K; Szymańska IB; Hoffmann P; Utke I Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34065297 [TBL] [Abstract][Full Text] [Related]
17. Electron interactions with the heteronuclear carbonyl precursor H P RKT; Weirich P; Hrachowina L; Hanefeld M; Bjornsson R; Hrodmarsson HR; Barth S; Fairbrother DH; Huth M; Ingólfsson O Beilstein J Nanotechnol; 2018; 9():555-579. PubMed ID: 29527432 [TBL] [Abstract][Full Text] [Related]
18. Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursor: Comparing Direct-Write Processing and Thermal Conversion. Jungwirth F; Salvador-Porroche A; Porrati F; Jochmann NP; Knez D; Huth M; Gracia I; Cané C; Cea P; De Teresa JM; Barth S J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(7):2967-2977. PubMed ID: 38444783 [TBL] [Abstract][Full Text] [Related]
19. Thickness-modulated tungsten-carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields. Serrano IG; Sesé J; Guillamón I; Suderow H; Vieira S; Ibarra MR; De Teresa JM Beilstein J Nanotechnol; 2016; 7():1698-1708. PubMed ID: 28144519 [TBL] [Abstract][Full Text] [Related]
20. Highly-efficient growth of cobalt nanostructures using focused ion beam induced deposition under cryogenic conditions: application to electrical contacts on graphene, magnetism and hard masking. Salvador-Porroche A; Sangiao S; Magén C; Barrado M; Philipp P; Belotcerkovtceva D; Kamalakar MV; Cea P; De Teresa JM Nanoscale Adv; 2021 Sep; 3(19):5656-5662. PubMed ID: 36133267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]