These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 37645465)
21. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Xie DY; Jackson LA; Cooper JD; Ferreira D; Paiva NL Plant Physiol; 2004 Mar; 134(3):979-94. PubMed ID: 14976232 [TBL] [Abstract][Full Text] [Related]
22. Dihydroflavonol 4-Reductase Genes from Li Y; Liu X; Cai X; Shan X; Gao R; Yang S; Han T; Wang S; Wang L; Gao X Front Plant Sci; 2017; 8():428. PubMed ID: 28400785 [TBL] [Abstract][Full Text] [Related]
23. Anthocyanin Profiles in Flowers of Grape Hyacinth. Lou Q; Wang L; Liu H; Liu Y Molecules; 2017 Apr; 22(5):. PubMed ID: 28445423 [TBL] [Abstract][Full Text] [Related]
24. An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). De Jong WS; De Jong DM; De Jong H; Kalazich J; Bodis M Theor Appl Genet; 2003 Nov; 107(8):1375-83. PubMed ID: 12955207 [TBL] [Abstract][Full Text] [Related]
25. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082 [TBL] [Abstract][Full Text] [Related]
26. Molecular Cloning and Functional Characterization of a Dihydroflavonol 4-Reductase from Vitis bellula. Zhu Y; Peng Q; Li K; Xie DY Molecules; 2018 Apr; 23(4):. PubMed ID: 29642567 [No Abstract] [Full Text] [Related]
27. Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Yan Y; Chemler J; Huang L; Martens S; Koffas MA Appl Environ Microbiol; 2005 Jul; 71(7):3617-23. PubMed ID: 16000769 [TBL] [Abstract][Full Text] [Related]
28. Gene characterization, analysis of expression and in vitro synthesis of dihydroflavonol 4-reductase from [Citrus sinensis (L.) Osbeck]. Lo Piero AR; Puglisi I; Petrone G Phytochemistry; 2006 Apr; 67(7):684-95. PubMed ID: 16524606 [TBL] [Abstract][Full Text] [Related]
29. Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. Shimada S; Otsuki H; Sakuta M J Exp Bot; 2007; 58(5):957-67. PubMed ID: 17185736 [TBL] [Abstract][Full Text] [Related]
30. Genetic and biochemical studies on the conversion of flavanones to dihydroflavonols in flowers of Petunia hybrida. Froemel S; de Vlaming P; Stotz G; Wiering H; Forkmann G; Schram AW Theor Appl Genet; 1985 Aug; 70(5):561-8. PubMed ID: 24253068 [TBL] [Abstract][Full Text] [Related]
31. The potato R locus codes for dihydroflavonol 4-reductase. Zhang Y; Cheng S; De Jong D; Griffiths H; Halitschke R; De Jong W Theor Appl Genet; 2009 Sep; 119(5):931-7. PubMed ID: 19588118 [TBL] [Abstract][Full Text] [Related]
32. Anthocyanin metabolic engineering of Lozoya-Gloria E; Cuéllar-González F; Ochoa-Alejo N Front Plant Sci; 2023; 14():1176701. PubMed ID: 37255565 [TBL] [Abstract][Full Text] [Related]
33. The B-ring hydroxylation pattern of anthocyanins can be determined through activity of the flavonoid 3'-hydroxylase on leucoanthocyanidins. Schwinn K; Miosic S; Davies K; Thill J; Gotame TP; Stich K; Halbwirth H Planta; 2014 Nov; 240(5):1003-10. PubMed ID: 25269395 [TBL] [Abstract][Full Text] [Related]
34. The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers. Chen G; Liu H; Wei Q; Zhao H; Liu J; Yu Y J Exp Bot; 2017 Jan; 68(3):457-467. PubMed ID: 28204578 [TBL] [Abstract][Full Text] [Related]
35. A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity. Katsu K; Suzuki R; Tsuchiya W; Inagaki N; Yamazaki T; Hisano T; Yasui Y; Komori T; Koshio M; Kubota S; Walker AR; Furukawa K; Matsui K BMC Plant Biol; 2017 Dec; 17(1):239. PubMed ID: 29228897 [TBL] [Abstract][Full Text] [Related]
36. Production of yellow-flowered gentian plants by genetic engineering of betaxanthin pigments. Nishihara M; Hirabuchi A; Goto F; Nishizaki Y; Uesugi S; Watanabe A; Tasaki K; Washiashi R; Sasaki N New Phytol; 2023 Nov; 240(3):1177-1188. PubMed ID: 37606277 [TBL] [Abstract][Full Text] [Related]
37. Anthocyanin synthesis in a white flowering mutant of Petunia hybrida : II. Accumulation of dihydroflavonol intermediates in white flowering mutants; uptake of intermediates in isolated corollas and conversion into anthocyanins. Kho KF; Bolsman-Louwen AC; Vuik JC; Bennink GJ Planta; 1977 Jan; 135(2):109-18. PubMed ID: 24420011 [TBL] [Abstract][Full Text] [Related]
38. The B-ring hydroxylation pattern of intermediates of anthocyanin synthesis in pelargonidin-and cyanidin-producing lines of Matthiola incana. Forkmann G Planta; 1980 Mar; 148(2):157-61. PubMed ID: 24309703 [TBL] [Abstract][Full Text] [Related]
39. Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida. Huits HS; Gerats AG; Kreike MM; Mol JN; Koes RE Plant J; 1994 Sep; 6(3):295-310. PubMed ID: 7920718 [TBL] [Abstract][Full Text] [Related]
40. Insights into the catalytic and regulatory mechanisms of dihydroflavonol 4-reductase, a key enzyme of anthocyanin synthesis in Zanthoxylum bungeanum. Aiguo Z; Ruiwen D; Cheng W; Cheng C; Dongmei W Tree Physiol; 2023 Jan; 43(1):169-184. PubMed ID: 36054375 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]