These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 37645687)
21. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Liaqat N; Jahan N; Khalil-Ur-Rahman ; Anwar T; Qureshi H Front Chem; 2022; 10():952006. PubMed ID: 36105303 [TBL] [Abstract][Full Text] [Related]
22. Dhaka A; Raj S; Githala CK; Chand Mali S; Trivedi R Front Bioeng Biotechnol; 2022; 10():977101. PubMed ID: 36267455 [TBL] [Abstract][Full Text] [Related]
23. The Antimicrobial Activities of Silver Nanoparticles from Aqueous Extract of Grape Seeds against Pathogenic Bacteria and Fungi. Al-Otibi F; Alkhudhair SK; Alharbi RI; Al-Askar AA; Aljowaie RM; Al-Shehri S Molecules; 2021 Oct; 26(19):. PubMed ID: 34641623 [TBL] [Abstract][Full Text] [Related]
24. Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. Ammar HA; El-Desouky TA J Appl Microbiol; 2016 Jul; 121(1):89-100. PubMed ID: 27002915 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of Sclerotinia sclerotiorum MTCC 8785 as a biological agent for the synthesis of silver nanoparticles and assessment of their antifungal potential against Trichoderma harzianum MTCC 801. Saxena J; Ayushi KM Environ Res; 2023 Jan; 216(Pt 3):114752. PubMed ID: 36351471 [TBL] [Abstract][Full Text] [Related]
27. Antimicrobial and dye degradation application of fungi-assisted silver nanoparticles and utilization of fungal retentate biomass for dye removal. Gola D; Tyagi PK; Arya A; Gupta D; Raghav J; Kaushik A; Agarwal M; Chauhan N; Srivastava SK Water Environ Res; 2021 Nov; 93(11):2727-2739. PubMed ID: 34415655 [TBL] [Abstract][Full Text] [Related]
28. Synthesis, characterization, and cytotoxicity of starch-encapsulated biogenic silver nanoparticle and its improved anti-bacterial activity. Saravanakumar K; Sriram B; Sathiyaseelan A; Mariadoss AVA; Hu X; Han KS; Vishnupriya V; MubarakAli D; Wang MH Int J Biol Macromol; 2021 Jul; 182():1409-1418. PubMed ID: 33965484 [TBL] [Abstract][Full Text] [Related]
29. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Gavade NL; Kadam AN; Suwarnkar MB; Ghodake VP; Garadkar KM Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():953-60. PubMed ID: 25459621 [TBL] [Abstract][Full Text] [Related]
30. Eco-friendly Green Synthesis of Silver Nanoparticles from Leaf Extract of Solanum khasianum: Optical Properties and Biological Applications. Chirumamilla P; Dharavath SB; Taduri S Appl Biochem Biotechnol; 2023 Jan; 195(1):353-368. PubMed ID: 36083433 [TBL] [Abstract][Full Text] [Related]
31. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Otunola GA; Afolayan AJ; Ajayi EO; Odeyemi SW Pharmacogn Mag; 2017 Jul; 13(Suppl 2):S201-S208. PubMed ID: 28808381 [TBL] [Abstract][Full Text] [Related]
32. Bio-synthesis and characterization of silver nanoparticles from Trichoderma species against cassava root rot disease. Thepbandit W; Papathoti NK; Hoang NH; Siriwong S; Sangpueak R; Saengchan C; Laemchiab K; Kiddeejing D; Tonpho K; Buensanteai K Sci Rep; 2024 May; 14(1):12535. PubMed ID: 38821999 [TBL] [Abstract][Full Text] [Related]
33. Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium. Neethu S; Midhun SJ; Sunil MA; Soumya S; Radhakrishnan EK; Jyothis M J Photochem Photobiol B; 2018 Mar; 180():175-185. PubMed ID: 29453129 [TBL] [Abstract][Full Text] [Related]
35. Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of their Antibacterial and Antioxidant Properties. Rigopoulos N; Thomou E; Kouloumpis Α; Lamprou ER; Petropoulea V; Gournis D; Poulios E; Karantonis HC; Giaouris E Curr Pharm Biotechnol; 2019; 20(10):858-873. PubMed ID: 30526454 [TBL] [Abstract][Full Text] [Related]
36. Biofabrication of novel silver and zinc oxide nanoparticles from Trzcińska-Wencel J; Wypij M; Terzyk AP; Rai M; Golińska P Front Chem; 2023; 11():1235437. PubMed ID: 37601908 [No Abstract] [Full Text] [Related]
37. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans. Anasane N; Golińska P; Wypij M; Rathod D; Dahm H; Rai M Mycoses; 2016 Mar; 59(3):157-66. PubMed ID: 26671603 [TBL] [Abstract][Full Text] [Related]
38. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. Saxena J; Sharma PK; Sharma MM; Singh A Springerplus; 2016; 5(1):861. PubMed ID: 27386310 [TBL] [Abstract][Full Text] [Related]
39. Green Synthesis and Characterization of Silver Nanoparticles Using Ndikau M; Noah NM; Andala DM; Masika E Int J Anal Chem; 2017; 2017():8108504. PubMed ID: 28316627 [TBL] [Abstract][Full Text] [Related]
40. Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Küp FÖ; Çoşkunçay S; Duman F Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110207. PubMed ID: 31761206 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]