These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
3. Validation and development of models using clinical, biochemical and ultrasound markers for predicting pre-eclampsia: an individual participant data meta-analysis. Allotey J; Snell KI; Smuk M; Hooper R; Chan CL; Ahmed A; Chappell LC; von Dadelszen P; Dodds J; Green M; Kenny L; Khalil A; Khan KS; Mol BW; Myers J; Poston L; Thilaganathan B; Staff AC; Smith GC; Ganzevoort W; Laivuori H; Odibo AO; Ramírez JA; Kingdom J; Daskalakis G; Farrar D; Baschat AA; Seed PT; Prefumo F; da Silva Costa F; Groen H; Audibert F; Masse J; Skråstad RB; Salvesen KÅ; Haavaldsen C; Nagata C; Rumbold AR; Heinonen S; Askie LM; Smits LJ; Vinter CA; Magnus PM; Eero K; Villa PM; Jenum AK; Andersen LB; Norman JE; Ohkuchi A; Eskild A; Bhattacharya S; McAuliffe FM; Galindo A; Herraiz I; Carbillon L; Klipstein-Grobusch K; Yeo S; Teede HJ; Browne JL; Moons KG; Riley RD; Thangaratinam S Health Technol Assess; 2020 Dec; 24(72):1-252. PubMed ID: 33336645 [TBL] [Abstract][Full Text] [Related]
4. Prospective evaluation of screening performance of first-trimester prediction models for preterm preeclampsia in an Asian population. Chaemsaithong P; Pooh RK; Zheng M; Ma R; Chaiyasit N; Tokunaka M; Shaw SW; Seshadri S; Choolani M; Wataganara T; Yeo GSH; Wright A; Leung WC; Sekizawa A; Hu Y; Naruse K; Saito S; Sahota D; Leung TY; Poon LC Am J Obstet Gynecol; 2019 Dec; 221(6):650.e1-650.e16. PubMed ID: 31589866 [TBL] [Abstract][Full Text] [Related]
5. Prediction of preeclampsia throughout gestation with maternal characteristics and biophysical and biochemical markers: a longitudinal study. Tarca AL; Taran A; Romero R; Jung E; Paredes C; Bhatti G; Ghita C; Chaiworapongsa T; Than NG; Hsu CD Am J Obstet Gynecol; 2022 Jan; 226(1):126.e1-126.e22. PubMed ID: 34998477 [TBL] [Abstract][Full Text] [Related]
6. Interpretable machine learning to predict adverse perinatal outcomes: examining marginal predictive value of risk factors during pregnancy. Lee SJ; Garcia GP; Stanhope KK; Platner MH; Boulet SL Am J Obstet Gynecol MFM; 2023 Oct; 5(10):101096. PubMed ID: 37454734 [TBL] [Abstract][Full Text] [Related]
7. Machine-learning-based prediction of pre-eclampsia using first-trimester maternal characteristics and biomarkers. Ansbacher-Feldman Z; Syngelaki A; Meiri H; Cirkin R; Nicolaides KH; Louzoun Y Ultrasound Obstet Gynecol; 2022 Dec; 60(6):739-745. PubMed ID: 36454636 [TBL] [Abstract][Full Text] [Related]
8. A machine-learning-based algorithm improves prediction of preeclampsia-associated adverse outcomes. Schmidt LJ; Rieger O; Neznansky M; Hackelöer M; Dröge LA; Henrich W; Higgins D; Verlohren S Am J Obstet Gynecol; 2022 Jul; 227(1):77.e1-77.e30. PubMed ID: 35114187 [TBL] [Abstract][Full Text] [Related]
9. Predictive performance of the competing risk model in screening for preeclampsia. Wright D; Tan MY; O'Gorman N; Poon LC; Syngelaki A; Wright A; Nicolaides KH Am J Obstet Gynecol; 2019 Feb; 220(2):199.e1-199.e13. PubMed ID: 30447210 [TBL] [Abstract][Full Text] [Related]
10. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks gestation. O'Gorman N; Wright D; Syngelaki A; Akolekar R; Wright A; Poon LC; Nicolaides KH Am J Obstet Gynecol; 2016 Jan; 214(1):103.e1-103.e12. PubMed ID: 26297382 [TBL] [Abstract][Full Text] [Related]
11. First-trimester preterm preeclampsia prediction with metabolite biomarkers: differential prediction according to maternal body mass index. Tuytten R; Syngelaki A; Thomas G; Panigassi A; Brown LW; Ortea P; Nicolaides KH Am J Obstet Gynecol; 2023 Jul; 229(1):55.e1-55.e10. PubMed ID: 36539025 [TBL] [Abstract][Full Text] [Related]
12. First trimester preeclampsia screening and prediction. Chaemsaithong P; Sahota DS; Poon LC Am J Obstet Gynecol; 2022 Feb; 226(2S):S1071-S1097.e2. PubMed ID: 32682859 [TBL] [Abstract][Full Text] [Related]
13. Preeclampsia Prediction Using Machine Learning and Polygenic Risk Scores From Clinical and Genetic Risk Factors in Early and Late Pregnancies. Kovacheva VP; Eberhard BW; Cohen RY; Maher M; Saxena R; Gray KJ Hypertension; 2024 Feb; 81(2):264-272. PubMed ID: 37901968 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of placental growth factor alone or in combination with soluble fms-like tyrosine kinase-1 or maternal factors in detecting preeclampsia in asymptomatic women in the second and third trimesters: a systematic review and meta-analysis. Chaemsaithong P; Gil MM; Chaiyasit N; Cuenca-Gomez D; Plasencia W; Rolle V; Poon LC Am J Obstet Gynecol; 2023 Sep; 229(3):222-247. PubMed ID: 36990308 [TBL] [Abstract][Full Text] [Related]
15. Development and Validation of a Robust and Interpretable Early Triaging Support System for Patients Hospitalized With COVID-19: Predictive Algorithm Modeling and Interpretation Study. Baek S; Jeong YJ; Kim YH; Kim JY; Kim JH; Kim EY; Lim JK; Kim J; Kim Z; Kim K; Chung MJ J Med Internet Res; 2024 Jan; 26():e52134. PubMed ID: 38206673 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Preeclampsia from Clinical and Genetic Risk Factors in Early and Late Pregnancy Using Machine Learning and Polygenic Risk Scores. Kovacheva VP; Eberhard BW; Cohen RY; Maher M; Saxena R; Gray KJ medRxiv; 2023 Feb; ():. PubMed ID: 36798188 [TBL] [Abstract][Full Text] [Related]
17. Development and internal validation of machine learning models for personalized survival predictions in spinal cord glioma patients. Karabacak M; Schupper AJ; Carr MT; Bhimani AD; Steinberger J; Margetis K Spine J; 2024 Jun; 24(6):1065-1076. PubMed ID: 38365005 [TBL] [Abstract][Full Text] [Related]