These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37645907)

  • 41. Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue.
    Griesser E; Wyatt H; Ten Have S; Stierstorfer B; Lenter M; Lamond AI
    Mol Cell Proteomics; 2020 May; 19(5):839-851. PubMed ID: 32132230
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for Quantitative Tissue Proteomic Analysis.
    Latosinska A; Vougas K; Makridakis M; Klein J; Mullen W; Abbas M; Stravodimos K; Katafigiotis I; Merseburger AS; Zoidakis J; Mischak H; Vlahou A; Jankowski V
    PLoS One; 2015; 10(9):e0137048. PubMed ID: 26331617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reproducible proteomics sample preparation for single FFPE tissue slices using acid-labile surfactant and direct trypsinization.
    Föll MC; Fahrner M; Oria VO; Kühs M; Biniossek ML; Werner M; Bronsert P; Schilling O
    Clin Proteomics; 2018; 15():11. PubMed ID: 29527141
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using single cell type proteomics to identify Al-induced proteomes in outer layer cells and interior tissues in the apical meristem/cell division regions of tomato root-tips.
    Potts J; Li H; Qin Y; Wu X; Hui D; Nasr KA; Zhou S; Yong Y; Fish T; Liu J; Thannhauser TW
    J Proteomics; 2022 Mar; 255():104486. PubMed ID: 35066208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts.
    Shen X; Shen S; Li J; Hu Q; Nie L; Tu C; Wang X; Orsburn B; Wang J; Qu J
    J Proteome Res; 2017 Jul; 16(7):2445-2456. PubMed ID: 28412812
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protocol for the Analysis of Laser Capture Microdissected Fresh-Frozen Tissue Homogenates by Silver-Stained 1D SDS-PAGE.
    Prieto DA; Whitely G; Johann DJ; Blonder J
    Methods Mol Biol; 2018; 1723():95-110. PubMed ID: 29344855
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics.
    Großerueschkamp F; Bracht T; Diehl HC; Kuepper C; Ahrens M; Kallenbach-Thieltges A; Mosig A; Eisenacher M; Marcus K; Behrens T; Brüning T; Theegarten D; Sitek B; Gerwert K
    Sci Rep; 2017 Mar; 7():44829. PubMed ID: 28358042
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On-Tissue Spatial Proteomics Integrating MALDI-MS Imaging with Shotgun Proteomics Reveals Soy Consumption-Induced Protein Changes in a Fragile X Syndrome Mouse Model.
    Ma M; Yu Q; Delafield DG; Cui Y; Li Z; Li M; Wu W; Shi X; Westmark PR; Gutierrez A; Ma G; Gao A; Xu M; Xu W; Westmark CJ; Li L
    ACS Chem Neurosci; 2024 Jan; 15(1):119-133. PubMed ID: 38109073
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Large-Scale Qualitative and Quantitative Top-Down Proteomics Using Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry with Nanograms of Proteome Samples.
    Lubeckyj RA; Basharat AR; Shen X; Liu X; Sun L
    J Am Soc Mass Spectrom; 2019 Aug; 30(8):1435-1445. PubMed ID: 30972727
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein Quantitation of the Developing Cochlea Using Mass Spectrometry.
    Darville LN; Sokolowski BH
    Methods Mol Biol; 2016; 1427():135-48. PubMed ID: 27259925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An exclusion list based label-free proteome quantification approach using an LTQ Orbitrap.
    Muntel J; Hecker M; Becher D
    Rapid Commun Mass Spectrom; 2012 Mar; 26(6):701-9. PubMed ID: 22328225
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The advantage of laser-capture microdissection over whole tissue analysis in proteomic profiling studies.
    De Marchi T; Braakman RB; Stingl C; van Duijn MM; Smid M; Foekens JA; Luider TM; Martens JW; Umar A
    Proteomics; 2016 May; 16(10):1474-85. PubMed ID: 27030549
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Label-Free Phosphoproteomic Approach for Kinase Signaling Analysis.
    Wilkes E; Cutillas PR
    Methods Mol Biol; 2017; 1636():199-217. PubMed ID: 28730481
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-cell Proteomics: Progress and Prospects.
    Kelly RT
    Mol Cell Proteomics; 2020 Nov; 19(11):1739-1748. PubMed ID: 32847821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Approaching cellular resolution and reliable identification in mass spectrometry imaging of tryptic peptides.
    Huber K; Khamehgir-Silz P; Schramm T; Gorshkov V; Spengler B; Römpp A
    Anal Bioanal Chem; 2018 Sep; 410(23):5825-5837. PubMed ID: 30066193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultra-High-Resolution IonStar Strategy Enhancing Accuracy and Precision of MS1-Based Proteomics and an Extensive Comparison with State-of-the-Art SWATH-MS in Large-Cohort Quantification.
    Wang X; Jin L; Hu C; Shen S; Qian S; Ma M; Zhu X; Li F; Wang J; Tian Y; Qu J
    Anal Chem; 2021 Mar; 93(11):4884-4893. PubMed ID: 33687211
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping in vivo target interaction profiles of covalent inhibitors using chemical proteomics with label-free quantification.
    van Rooden EJ; Florea BI; Deng H; Baggelaar MP; van Esbroeck ACM; Zhou J; Overkleeft HS; van der Stelt M
    Nat Protoc; 2018 Apr; 13(4):752-767. PubMed ID: 29565900
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.
    Goeminne LJE; Gevaert K; Clement L
    J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoparticle-Aided Nanoreactor for Nanoproteomics.
    Yang Z; Zhang Z; Chen D; Xu T; Wang Y; Sun L
    Anal Chem; 2021 Aug; 93(30):10568-10576. PubMed ID: 34297524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics.
    Williams SM; Liyu AV; Tsai CF; Moore RJ; Orton DJ; Chrisler WB; Gaffrey MJ; Liu T; Smith RD; Kelly RT; Pasa-Tolic L; Zhu Y
    Anal Chem; 2020 Aug; 92(15):10588-10596. PubMed ID: 32639140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.