BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37645967)

  • 1. Insights into RAG evolution from the identification of "missing link" family A
    Martin EC; Le Targa L; Tsakou-Ngouafo L; Fan TP; Lin CY; Xiao J; Su YH; Petrescu AJ; Pontarotti P; Schatz DG
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into RAG Evolution from the Identification of "Missing Link" Family A RAGL Transposons.
    Martin EC; Le Targa L; Tsakou-Ngouafo L; Fan TP; Lin CY; Xiao J; Huang Z; Yuan S; Xu A; Su YH; Petrescu AJ; Pontarotti P; Schatz DG
    Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37850912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of RAG-like transposons in protostomes suggests their ancient bilaterian origin.
    Martin EC; Vicari C; Tsakou-Ngouafo L; Pontarotti P; Petrescu AJ; Schatz DG
    Mob DNA; 2020; 11():17. PubMed ID: 32399063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different sea urchin RAG-like genes were domesticated to carry out different functions.
    Yakovenko I; Tobi D; Ner-Gaon H; Oren M
    Front Immunol; 2022; 13():1066510. PubMed ID: 36726993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the evolution of the RAG recombinase.
    Liu C; Zhang Y; Liu CC; Schatz DG
    Nat Rev Immunol; 2022 Jun; 22(6):353-370. PubMed ID: 34675378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposon molecular domestication and the evolution of the RAG recombinase.
    Zhang Y; Cheng TC; Huang G; Lu Q; Surleac MD; Mandell JD; Pontarotti P; Petrescu AJ; Xu A; Xiong Y; Schatz DG
    Nature; 2019 May; 569(7754):79-84. PubMed ID: 30971819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons.
    Kapitonov VV; Jurka J
    PLoS Biol; 2005 Jun; 3(6):e181. PubMed ID: 15898832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination.
    Carmona LM; Schatz DG
    FEBS J; 2017 Jun; 284(11):1590-1605. PubMed ID: 27973733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the activation and suppression of transposition during evolution of the RAG recombinase.
    Zhang Y; Corbett E; Wu S; Schatz DG
    EMBO J; 2020 Nov; 39(21):e105857. PubMed ID: 32945578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination.
    Yakovenko I; Agronin J; Smith LC; Oren M
    Front Immunol; 2021; 12():709165. PubMed ID: 34394111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates.
    Morales Poole JR; Huang SF; Xu A; Bayet J; Pontarotti P
    Immunogenetics; 2017 Jun; 69(6):391-400. PubMed ID: 28451741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA bending in the synaptic complex in V(D)J recombination: turning an ancestral transpososome upside down.
    Ciubotaru M; Surleac M; Musat MG; Rusu AM; Ionita E; Albu PCC
    Discoveries (Craiova); 2014 Mar; 2(1):e13. PubMed ID: 32309545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collaboration of RAG2 with RAG1-like proteins during the evolution of V(D)J recombination.
    Carmona LM; Fugmann SD; Schatz DG
    Genes Dev; 2016 Apr; 30(8):909-17. PubMed ID: 27056670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination.
    Huang S; Tao X; Yuan S; Zhang Y; Li P; Beilinson HA; Zhang Y; Yu W; Pontarotti P; Escriva H; Le Petillon Y; Liu X; Chen S; Schatz DG; Xu A
    Cell; 2016 Jun; 166(1):102-14. PubMed ID: 27293192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional requirement of terminal inverted repeats for efficient
    Tao X; Yuan S; Chen F; Gao X; Wang X; Yu W; Liu S; Huang Z; Chen S; Xu A
    Natl Sci Rev; 2020 Feb; 7(2):403-417. PubMed ID: 34692056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary conservation of the bidirectional activity of the NWC gene promoter in jawed vertebrates and the domestication of the RAG transposon.
    Sniezewski L; Janik S; Laszkiewicz A; Majkowski M; Kisielow P; Cebrat M
    Dev Comp Immunol; 2018 Apr; 81():105-115. PubMed ID: 29175053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon.
    Kapitonov VV; Koonin EV
    Biol Direct; 2015 Apr; 10():20. PubMed ID: 25928409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molluscan mobile elements similar to the vertebrate Recombination-Activating Genes.
    Panchin Y; Moroz LL
    Biochem Biophys Res Commun; 2008 May; 369(3):818-23. PubMed ID: 18313399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of a RAG-like transposase during cut-and-paste transposition.
    Liu C; Yang Y; Schatz DG
    Nature; 2019 Nov; 575(7783):540-544. PubMed ID: 31723264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity.
    Dreyfus DH
    PLoS One; 2009 Jun; 4(6):e5778. PubMed ID: 19492059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.