These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37646074)

  • 1. Influence of rheology and micropatterns on spreading, retraction and fingering of an impacting drop.
    Pandian SK; Broom M; Balzan M; Willmott GR
    Soft Matter; 2023 Sep; 19(35):6784-6796. PubMed ID: 37646074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetries in the spread of drops impacting on hydrophobic micropillar arrays.
    Robson S; Willmott GR
    Soft Matter; 2016 May; 12(21):4853-65. PubMed ID: 27140067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact Line Instability of Gravity-Driven Flow of Power-Law Fluids.
    Hu B; Kieweg SL
    J Nonnewton Fluid Mech; 2015 Nov; 225():62-69. PubMed ID: 26858472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet impact of blood and blood simulants on a solid surface: Effect of the deformability of red blood cells and the elasticity of plasma.
    Yokoyama Y; Tanaka A; Tagawa Y
    Forensic Sci Int; 2022 Feb; 331():111138. PubMed ID: 34906891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant.
    Roques-Carmes T; Mathieu V; Gigante A
    J Colloid Interface Sci; 2010 Apr; 344(1):180-97. PubMed ID: 20089256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal Aspects of Droplet Spreading Dynamics in Newtonian and Non-Newtonian Fluids.
    Gorin B; Di Mauro G; Bonn D; Kellay H
    Langmuir; 2022 Mar; 38(8):2608-2613. PubMed ID: 35179899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry.
    Bolleddula DA; Berchielli A; Aliseda A
    Adv Colloid Interface Sci; 2010 Sep; 159(2):144-59. PubMed ID: 20638044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric Spreading of a Drop upon Impact onto a Surface.
    Almohammadi H; Amirfazli A
    Langmuir; 2017 Jun; 33(23):5957-5964. PubMed ID: 28505450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats.
    Lembach AN; Tan HB; Roisman IV; Gambaryan-Roisman T; Zhang Y; Tropea C; Yarin AL
    Langmuir; 2010 Jun; 26(12):9516-23. PubMed ID: 20205398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jumps, somersaults, and symmetry breaking in Leidenfrost drops.
    Chen S; Bertola V
    Phys Rev E; 2016 Aug; 94(2-1):021102. PubMed ID: 27627234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Hybrid Laser Ablation and Silanization Process.
    Xia Z; Xiao Y; Yang Z; Li L; Wang S; Liu X; Tian Y
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30845671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture.
    Vaikuntanathan V; Sivakumar D
    Langmuir; 2016 Mar; 32(10):2399-409. PubMed ID: 26885767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact Dynamics of Non-Newtonian Droplets on Superhydrophobic Surfaces.
    Biroun MH; Haworth L; Abdolnezhad H; Khosravi A; Agrawal P; McHale G; Torun H; Semprebon C; Jabbari M; Fu YQ
    Langmuir; 2023 Apr; 39(16):5793-5802. PubMed ID: 37041655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spreading-splashing transition of nanofluid droplets on a smooth flat surface.
    Aksoy YT; Eneren P; Koos E; Vetrano MR
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):434-443. PubMed ID: 34411826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of shear-thinning and yield-stress drops on solid substrates.
    German G; Bertola V
    J Phys Condens Matter; 2009 Sep; 21(37):375111. PubMed ID: 21832342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How microstructures affect air film dynamics prior to drop impact.
    van der Veen RC; Hendrix MH; Tran T; Sun C; Tsai PA; Lohse D
    Soft Matter; 2014 Jun; 10(21):3703-7. PubMed ID: 24740526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.