These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37646194)

  • 1. Correction: Cross-linkable, phosphobetaine-based, zwitterionic amphiphiles that form lyotropic bicontinuous cubic phases.
    Bodkin LN; Krajnak ZA; Dong R; Osuji CO; Gin DL
    Soft Matter; 2023 Sep; 19(35):6851-6854. PubMed ID: 37646194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linkable, phosphobetaine-based, zwitterionic amphiphiles that form lyotropic bicontinuous cubic phases.
    Bodkin LN; Krajnak ZA; Dong R; Osuji CO; Gin DL
    Soft Matter; 2023 May; 19(21):3768-3772. PubMed ID: 37191297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linked normal hexagonal and bicontinuous cubic assemblies via polymerizable gemini amphiphiles.
    Pindzola BA; Jin J; Gin DL
    J Am Chem Soc; 2003 Mar; 125(10):2940-9. PubMed ID: 12617661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkyl-bis(imidazolium) salts: a new amphiphile platform that forms thermotropic and non-aqueous lyotropic bicontinuous cubic phases.
    Robertson LA; Schenkel MR; Wiesenauer BR; Gin DL
    Chem Commun (Camb); 2013 Oct; 49(82):9407-9. PubMed ID: 24003443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.
    Moghaddam MJ; de Campo L; Kirby N; Drummond CJ
    Phys Chem Chem Phys; 2012 Oct; 14(37):12854-62. PubMed ID: 22890045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusually stable aqueous lyotropic gyroid phases from gemini dicarboxylate surfactants.
    Sorenson GP; Coppage KL; Mahanthappa MK
    J Am Chem Soc; 2011 Sep; 133(38):14928-31. PubMed ID: 21888359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases.
    Shearman GC; Khoo BJ; Motherwell ML; Brakke KA; Ces O; Conn CE; Seddon JM; Templer RH
    Langmuir; 2007 Jun; 23(13):7276-85. PubMed ID: 17503862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction: Experimental studies on the rheology of cubic blue phases.
    Sahoo R; Chojnowska O; Dabrowski R; Dhara S
    Soft Matter; 2016 Jan; 12(4):1330. PubMed ID: 26670796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of bicontinuous cubic liquid-crystalline assemblies for polymerizable amphiphiles via tailor-made design of ionic liquids.
    Takeuchi H; Ichikawa T; Yoshio M; Kato T; Ohno H
    Chem Commun (Camb); 2016 Nov; 52(96):13861-13864. PubMed ID: 27841379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermotropic and lyotropic properties of long chain alkyl glycopyranosides. Part II. Disaccharide headgroups.
    von Minden HM; Brandenburg K; Seydel U; Koch MH; Garamus V; Willumeit R; Vill V
    Chem Phys Lipids; 2000 Aug; 106(2):157-79. PubMed ID: 10930567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-swelled lyotropic single crystals.
    Kim H; Song Z; Leal C
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10834-10839. PubMed ID: 28973884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition brings out the best: modelling the frustration between curvature energy and chain stretching energy of lyotropic liquid crystals in bicontinuous cubic phases.
    Chen H; Jin C
    Interface Focus; 2017 Aug; 7(4):20160114. PubMed ID: 28630668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of structural transformations between lamellar and inverse bicontinuous cubic lyotropic phases.
    Conn CE; Ces O; Mulet X; Finet S; Winter R; Seddon JM; Templer RH
    Phys Rev Lett; 2006 Mar; 96(10):108102. PubMed ID: 16605794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of structural modification of (alkyldiene-imidazolium bromide)-based gemini monomers on the formation of the lyotropic bicontinuous cubic phase.
    Li P; Reinhardt MI; Dyer SS; Moore KE; Imran OQ; Gin DL
    Soft Matter; 2021 Oct; 17(41):9259-9263. PubMed ID: 34636835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling nanostructure and lattice parameter of the inverse bicontinuous cubic phases in functionalised phytantriol dispersions.
    Fraser SJ; Mulet X; Hawley A; Separovic F; Polyzos A
    J Colloid Interface Sci; 2013 Oct; 408():117-24. PubMed ID: 23928485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swelling of Bicontinuous Cubic Phases in Guerbet Glycolipid: Effects of Additives.
    Salim M; Wan Iskandar WF; Patrick M; Zahid NI; Hashim R
    Langmuir; 2016 Jun; 32(22):5552-61. PubMed ID: 27183393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour.
    Sagnella SM; Conn CE; Krodkiewska I; Drummond CJ
    Phys Chem Chem Phys; 2011 Oct; 13(39):17511-20. PubMed ID: 21909506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination.
    Fong C; Weerawardena A; Sagnella SM; Mulet X; Krodkiewska I; Chong J; Drummond CJ
    Langmuir; 2011 Mar; 27(6):2317-26. PubMed ID: 21294552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Viologen-Based Liquid Crystals Exhibiting Bicontinuous Cubic Phases and Their Redox-Active Behavior.
    Kobayashi T; Ichikawa T
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29077001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Obtaining and Characterizing Stable Bicontinuous Cubic Morphologies and Their Nanochannels in Lyotropic Liquid Crystal Membranes.
    Sahu S; Schwindt NS; Coscia BJ; Shirts MR
    J Phys Chem B; 2022 Dec; 126(48):10098-10110. PubMed ID: 36417348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.