These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37646337)

  • 1. Ester Bond: Chemically Labile Yet Mechanically Stable.
    Lei H; Ma Q; Wang Z; Zhang D; Huang X; Qin M; Ma H; Wang W; Cao Y
    ACS Nano; 2023 Sep; 17(17):16870-16878. PubMed ID: 37646337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule force-clamp experiments reveal kinetics of mechanically activated silyl ester hydrolysis.
    Schmidt SW; Filippov P; Kersch A; Beyer MK; Clausen-Schaumann H
    ACS Nano; 2012 Feb; 6(2):1314-21. PubMed ID: 22251147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ester bond underlies the mechanical strength of a pathogen surface protein.
    Lei H; Ma Q; Li W; Wen J; Ma H; Qin M; Wang W; Cao Y
    Nat Commun; 2021 Aug; 12(1):5082. PubMed ID: 34426584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ester Bonds for Modulation of the Mechanical Properties of Protein Hydrogels.
    Zhang D; Li L; Fang Y; Ma Q; Cao Y; Lei H
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Molecule Force Spectroscopy Reveals the pH-Dependent Mechanical Strength of the Alkynyl-Gold Bond.
    Wang X; Li B; Qin M; Cao Y; Wang W
    J Biomed Nanotechnol; 2018 Feb; 14(2):344-353. PubMed ID: 31352930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A density functional theory model of mechanically activated silyl ester hydrolysis.
    Pill MF; Schmidt SW; Beyer MK; Clausen-Schaumann H; Kersch A
    J Chem Phys; 2014 Jan; 140(4):044321. PubMed ID: 25669537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of cellular adhesion reinforcement by multiple bond force spectroscopy in alveolar epithelial cells.
    Nguyen NM; Angely C; Andre Dias S; Planus E; Filoche M; Pelle G; Louis B; Isabey D
    Biol Cell; 2017 Jul; 109(7):255-272. PubMed ID: 28543271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction.
    Koti Ainavarapu SR; Wiita AP; Dougan L; Uggerud E; Fernandez JM
    J Am Chem Soc; 2008 May; 130(20):6479-87. PubMed ID: 18433129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically induced silyl ester cleavage under acidic conditions investigated by AFM-based single-molecule force spectroscopy in the force-ramp mode.
    Schmidt SW; Pill MF; Kersch A; Clausen-Schaumann H; Beyer MK
    Faraday Discuss; 2014; 170():357-67. PubMed ID: 25406480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Activation Drastically Accelerates Amide Bond Hydrolysis, Matching Enzyme Activity.
    Pill MF; East ALL; Marx D; Beyer MK; Clausen-Schaumann H
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9787-9790. PubMed ID: 31112349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Measurements of the Cobalt-Thiolate Bonds Strength in Rubredoxin by Single-Molecule Force Spectroscopy.
    Shi S; Wu T; Zheng P
    Chembiochem; 2022 Jun; 23(12):e202200165. PubMed ID: 35475313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinpointing mechanochemical bond rupture by embedding the mechanophore into a macrocycle.
    Schütze D; Holz K; Müller J; Beyer MK; Lüning U; Hartke B
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2556-9. PubMed ID: 25613672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically activated rupture of single covalent bonds: evidence of force induced bond hydrolysis.
    Schmidt SW; Kersch A; Beyer MK; Clausen-Schaumann H
    Phys Chem Chem Phys; 2011 Apr; 13(13):5994-9. PubMed ID: 21340079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly covalent ferric-thiolate bonds exhibit surprisingly low mechanical stability.
    Zheng P; Li H
    J Am Chem Soc; 2011 May; 133(17):6791-8. PubMed ID: 21476573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy.
    Dettmann W; Grandbois M; André S; Benoit M; Wehle AK; Kaltner H; Gabius HJ; Gaub HE
    Arch Biochem Biophys; 2000 Nov; 383(2):157-70. PubMed ID: 11185549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of viscoelasticity on the analysis of single-molecule force spectroscopy on live cells.
    Gupta VK; Neeves KB; Eggleton CD
    Biophys J; 2012 Jul; 103(1):137-45. PubMed ID: 22828340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the multistep rupture of fibrin 'A-a' polymerization interactions measured using atomic force microscopy.
    Averett LE; Schoenfisch MH; Akhremitchev BB; Gorkun OV
    Biophys J; 2009 Nov; 97(10):2820-8. PubMed ID: 19917237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking a dative bond with mechanical forces.
    Chen P; Fan D; Zhang Y; Selloni A; Carter EA; Arnold CB; Dankworth DC; Rucker SP; Chelikowsky JR; Yao N
    Nat Commun; 2021 Sep; 12(1):5635. PubMed ID: 34561452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module.
    Li L; Huang HH; Badilla CL; Fernandez JM
    J Mol Biol; 2005 Jan; 345(4):817-26. PubMed ID: 15588828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histidine-Specific Bioconjugation for Single-Molecule Force Spectroscopy.
    Lei H; Zhang J; Li Y; Wang X; Qin M; Wang W; Cao Y
    ACS Nano; 2022 Sep; 16(9):15440-15449. PubMed ID: 35980082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.