These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37646406)

  • 1. Synthesis, Reverse Transcription, Replication, and Inter-Transcription of 2'-Modified Nucleic Acids with Evolved Thermophilic Polymerases: Efforts toward Multidimensional Expansion of the Central Dogma.
    Qin Y; Ma X; Tao R; Du Y; Chen T
    ACS Synth Biol; 2023 Sep; 12(9):2616-2631. PubMed ID: 37646406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology.
    Wang G; Du Y; Ma X; Ye F; Qin Y; Wang Y; Xiang Y; Tao R; Chen T
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription, Reverse Transcription, and Amplification of Backbone-Modified Nucleic Acids with Laboratory-Evolved Thermophilic DNA Polymerases.
    Song P; Zhang R; He C; Chen T
    Curr Protoc; 2021 Jul; 1(7):e188. PubMed ID: 34232574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamines promote xenobiotic nucleic acid synthesis by modified thermophilic polymerase mutants.
    Hoshino H; Kasahara Y; Obika S
    RSC Chem Biol; 2024 May; 5(5):467-472. PubMed ID: 38725908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XNA Synthesis and Reverse Transcription by Engineered Thermophilic Polymerases.
    Cozens C; Pinheiro VB
    Curr Protoc Chem Biol; 2018 Sep; 10(3):e47. PubMed ID: 30039931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma.
    Sun L; Ma X; Zhang B; Qin Y; Ma J; Du Y; Chen T
    RSC Chem Biol; 2022 Oct; 3(10):1173-1197. PubMed ID: 36320892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology.
    Medina E; Yik EJ; Herdewijn P; Chaput JC
    ACS Synth Biol; 2021 Jun; 10(6):1429-1437. PubMed ID: 34029459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutant polymerases capable of 2' fluoro-modified nucleic acid synthesis and amplification with improved accuracy.
    Christensen TA; Lee KY; Gottlieb SZP; Carrier MB; Leconte AM
    RSC Chem Biol; 2022 Aug; 3(8):1044-1051. PubMed ID: 35975008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic analysis of engineered polymerases synthesizing phosphonomethylthreosyl nucleic acid.
    Hajjar M; Chim N; Liu C; Herdewijn P; Chaput JC
    Nucleic Acids Res; 2022 Sep; 50(17):9663-9674. PubMed ID: 36124684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selecting Fully-Modified XNA Aptamers Using Synthetic Genetics.
    Taylor AI; Holliger P
    Curr Protoc Chem Biol; 2018 Jun; 10(2):e44. PubMed ID: 29927117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compartmentalized Self-Tagging for In Vitro-Directed Evolution of XNA Polymerases.
    Pinheiro VB; Arangundy-Franklin S; Holliger P
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.9.1-18. PubMed ID: 24961724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers.
    Liu C; Cozens C; Jaziri F; Rozenski J; Maréchal A; Dumbre S; Pezo V; Marlière P; Pinheiro VB; Groaz E; Herdewijn P
    J Am Chem Soc; 2018 May; 140(21):6690-6699. PubMed ID: 29722977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Life with Alternative Nucleic Acids as Genetic Materials.
    Nie P; Bai Y; Mei H
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic genetic polymers capable of heredity and evolution.
    Pinheiro VB; Taylor AI; Cozens C; Abramov M; Renders M; Zhang S; Chaput JC; Wengel J; Peak-Chew SY; McLaughlin SH; Herdewijn P; Holliger P
    Science; 2012 Apr; 336(6079):341-4. PubMed ID: 22517858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering TNA polymerases through iterative cycles of directed evolution.
    Yik EJ; Maola VA; Chaput JC
    Methods Enzymol; 2023; 691():29-59. PubMed ID: 37914450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Polymerase Variants with High Processivity and Accuracy for Encoding and Decoding Locked Nucleic Acid Sequences.
    Hoshino H; Kasahara Y; Kuwahara M; Obika S
    J Am Chem Soc; 2020 Dec; 142(51):21530-21537. PubMed ID: 33306372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of Information Stored in Modified DNA with an Evolved Polymerase.
    Shroff R; Ellefson JW; Wang SS; Boulgakov AA; Hughes RA; Ellington AD
    ACS Synth Biol; 2022 Feb; 11(2):554-561. PubMed ID: 35113518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond DNA and RNA: The Expanding Toolbox of Synthetic Genetics.
    Taylor AI; Houlihan G; Holliger P
    Cold Spring Harb Perspect Biol; 2019 Jun; 11(6):. PubMed ID: 31160351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.