These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37646406)

  • 41. Engineered Polymerases with Altered Substrate Specificity: Expression and Purification.
    Nikoomanzar A; Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2017 Jun; 69():4.75.1-4.75.20. PubMed ID: 28628207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of 3'-phosphate as a transient protecting group for controlled enzymatic synthesis of DNA and XNA oligonucleotides.
    Flamme M; Hanlon S; Marzuoli I; Püntener K; Sladojevich F; Hollenstein M
    Commun Chem; 2022 Jun; 5(1):68. PubMed ID: 36697944
    [TBL] [Abstract][Full Text] [Related]  

  • 43. New chemistries and enzymes for synthetic genetics.
    Freund N; Fürst MJLJ; Holliger P
    Curr Opin Biotechnol; 2022 Apr; 74():129-136. PubMed ID: 34883451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study on suitability of KOD DNA polymerase for enzymatic production of artificial nucleic acids using base/sugar modified nucleoside triphosphates.
    Kuwahara M; Takano Y; Kasahara Y; Nara H; Ozaki H; Sawai H; Sugiyama A; Obika S
    Molecules; 2010 Nov; 15(11):8229-40. PubMed ID: 21076389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Network of Replication, Transcription, and Reverse Transcription of a Synthetic Genetic Cassette.
    Yang H; Eremeeva E; Abramov M; Herdewijn P
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4175-4182. PubMed ID: 33142013
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amino-acyl tXNA as inhibitors or amino acid donors in peptide synthesis.
    Rietmeyer L; Li De La Sierra-Gallay I; Schepers G; Dorchêne D; Iannazzo L; Patin D; Touzé T; van Tilbeurgh H; Herdewijn P; Ethève-Quelquejeu M; Fonvielle M
    Nucleic Acids Res; 2022 Nov; 50(20):11415-11425. PubMed ID: 36350642
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redesigning the leaving group in nucleic acid polymerization.
    Herdewijn P; Marlière P
    FEBS Lett; 2012 Jul; 586(15):2049-56. PubMed ID: 22710178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcription, reverse transcription, and analysis of RNA containing artificial genetic components.
    Leal NA; Kim HJ; Hoshika S; Kim MJ; Carrigan MA; Benner SA
    ACS Synth Biol; 2015 Apr; 4(4):407-13. PubMed ID: 25137127
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalysts from synthetic genetic polymers.
    Taylor AI; Pinheiro VB; Smola MJ; Morgunov AS; Peak-Chew S; Cozens C; Weeks KM; Herdewijn P; Holliger P
    Nature; 2015 Feb; 518(7539):427-30. PubMed ID: 25470036
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A short adaptive path from DNA to RNA polymerases.
    Cozens C; Pinheiro VB; Vaisman A; Woodgate R; Holliger P
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8067-72. PubMed ID: 22566643
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.
    Ong JL; Loakes D; Jaroslawski S; Too K; Holliger P
    J Mol Biol; 2006 Aug; 361(3):537-50. PubMed ID: 16859707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An efficient and faithful in vitro replication system for threose nucleic acid.
    Yu H; Zhang S; Dunn MR; Chaput JC
    J Am Chem Soc; 2013 Mar; 135(9):3583-91. PubMed ID: 23432469
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers.
    Taylor AI; Holliger P
    Nat Protoc; 2015 Oct; 10(10):1625-42. PubMed ID: 26401917
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained by Directed Evolution.
    Samson C; Legrand P; Tekpinar M; Rozenski J; Abramov M; Holliger P; Pinheiro VB; Herdewijn P; Delarue M
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33302546
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs.
    Alenaizan A; Barnett JL; Hud NV; Sherrill CD; Petrov AS
    Nucleic Acids Res; 2021 Jan; 49(1):79-89. PubMed ID: 33300028
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of Innate Immune Responses by a CpG Oligonucleotide Sequence Composed Entirely of Threose Nucleic Acid.
    Lange MJ; Burke DH; Chaput JC
    Nucleic Acid Ther; 2019 Feb; 29(1):51-59. PubMed ID: 30526333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The XNA world: progress towards replication and evolution of synthetic genetic polymers.
    Pinheiro VB; Holliger P
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):245-52. PubMed ID: 22704981
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription.
    Hocek M
    Acc Chem Res; 2019 Jun; 52(6):1730-1737. PubMed ID: 31181911
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA polymerases and biotechnological applications.
    Aschenbrenner J; Marx A
    Curr Opin Biotechnol; 2017 Dec; 48():187-195. PubMed ID: 28618333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.