BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37646463)

  • 1. Pre-whitened matched filter and convolutional neural network based model observer performance for mass lesion detection in non-contrast breast CT.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2023 Dec; 50(12):7558-7567. PubMed ID: 37646463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model observer performance in contrast-enhanced lesions in breast CT: The influence of contrast concentration on detectability.
    Lyu SH; Hernandez AM; Shakeri SA; Abbey CK; Boone JM
    Med Phys; 2023 Nov; 50(11):6748-6761. PubMed ID: 37639329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions.
    Packard NJ; Abbey CK; Yang K; Boone JM
    Med Phys; 2012 Apr; 39(4):1818-30. PubMed ID: 22482604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcalcification detectability in breast CT images using CNN observers.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2024 Feb; 51(2):933-945. PubMed ID: 38154070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategy to implement a convolutional neural network based ideal model observer via transfer learning for multi-slice simulated breast CT images.
    Kim G; Han M; Baek J
    Phys Med Biol; 2023 May; 68(11):. PubMed ID: 37137323
    [No Abstract]   [Full Text] [Related]  

  • 6. A convolutional neural network-based model observer for breast CT images.
    Kim G; Han M; Shim H; Baek J
    Med Phys; 2020 Apr; 47(4):1619-1632. PubMed ID: 32017147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study.
    Kopp FK; Catalano M; Pfeiffer D; Fingerle AA; Rummeny EJ; Noël PB
    Med Phys; 2018 Oct; 45(10):4439-4447. PubMed ID: 30137658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional neural network-based model observer for signal known statistically task in breast tomosynthesis images.
    Jang H; Baek J
    Med Phys; 2023 Oct; 50(10):6390-6408. PubMed ID: 36971505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast.
    Chen L; Boone JM; Abbey CK; Hargreaves J; Bateni C; Lindfors KK; Yang K; Nosratieh A; Hernandez A; Gazi P
    Phys Med Biol; 2015 Apr; 60(8):3347-58. PubMed ID: 25825980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A convolutional neural network-based anthropomorphic model observer for signal-known-statistically and background-known-statistically detection tasks.
    Han M; Baek J
    Phys Med Biol; 2020 Nov; 65(22):225025. PubMed ID: 33032268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A performance comparison of anthropomorphic model observers for breast cone beam CT images: A single-slice and multislice study.
    Han M; Baek J
    Med Phys; 2019 Aug; 46(8):3431-3441. PubMed ID: 31106432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-dose CT denoising via convolutional neural network with an observer loss function.
    Han M; Shim H; Baek J
    Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shading artifact correction in breast CT using an interleaved deep learning segmentation and maximum-likelihood polynomial fitting approach.
    Ghazi P; Hernandez AM; Abbey C; Yang K; Boone JM
    Med Phys; 2019 Aug; 46(8):3414-3430. PubMed ID: 31102462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between human observer performance and model observer performance in differential phase contrast CT.
    Li K; Garrett J; Chen GH
    Med Phys; 2013 Nov; 40(11):111905. PubMed ID: 24320438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for x-ray scatter correction in dedicated breast CT.
    Pautasso JJ; Caballo M; Mikerov M; Boone JM; Michielsen K; Sechopoulos I
    Med Phys; 2023 Apr; 50(4):2022-2036. PubMed ID: 36565012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain.
    Leng S; Yu L; Zhang Y; Carter R; Toledano AY; McCollough CH
    Med Phys; 2013 Aug; 40(8):081908. PubMed ID: 23927322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual-search observers for assessing tomographic x-ray image quality.
    Gifford HC; Liang Z; Das M
    Med Phys; 2016 Mar; 43(3):1563-75. PubMed ID: 26936739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.