BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37646489)

  • 1. Kinetics of Single-Wall Carbon Nanotube Coating Displacement by Single-Stranded DNA Depends on Nanotube Structure.
    Lei K; Bachilo SM; Weisman RB
    ACS Nano; 2023 Sep; 17(17):17568-17575. PubMed ID: 37646489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diameter-Dependent Competitive Adsorption of Sodium Dodecyl Sulfate and Single-Stranded DNA on Carbon Nanotubes.
    Lei K; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2023 Dec; 14(49):11043-11049. PubMed ID: 38047931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantiomers of Single-Wall Carbon Nanotubes Show Distinct Coating Displacement Kinetics.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2018 Jul; 9(13):3793-3797. PubMed ID: 29939759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage.
    Zheng Y; Alizadehmojarad AA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2020 Sep; 14(9):12148-12158. PubMed ID: 32845604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-Carbon Nanotube Complexation Affinity and Photoluminescence Modulation Are Independent.
    Jena PV; Safaee MM; Heller DA; Roxbury D
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21397-21405. PubMed ID: 28573867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compositional Analysis of ssDNA-Coated Single-Wall Carbon Nanotubes through UV Absorption Spectroscopy.
    Alizadehmojarad AA; Bachilo SM; Weisman RB
    Nano Lett; 2022 Oct; 22(20):8203-8209. PubMed ID: 36201880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.
    Vo MD; Papavassiliou DV
    Molecules; 2016 Apr; 21(4):500. PubMed ID: 27092476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.
    Zheng Y; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2017 May; 8(9):1952-1955. PubMed ID: 28406641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes.
    Polo E; Nitka TT; Neubert E; Erpenbeck L; Vuković L; Kruss S
    ACS Appl Mater Interfaces; 2018 May; 10(21):17693-17703. PubMed ID: 29708725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Sequence Mediates Apparent Length Distribution in Single-Walled Carbon Nanotubes.
    Safaee MM; Gravely M; Rocchio C; Simmeth M; Roxbury D
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2225-2233. PubMed ID: 30575397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the Morphology of DNA on Carbon Nanotubes in Solution Using X-ray Scattering Interferometry.
    Rosenberg DJ; Cunningham FJ; Hubbard JD; Goh NS; Wang JW; Nishitani S; Hayman EB; Hura GL; Landry MP; Pinals RL
    J Am Chem Soc; 2024 Jan; 146(1):386-398. PubMed ID: 38158616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanine-Specific Chemical Reaction Reveals ssDNA Interactions on Carbon Nanotube Surfaces.
    Zheng Y; Alizadehmojarad AA; Bachilo SM; Weisman RB
    J Phys Chem Lett; 2022 Mar; 13(9):2231-2236. PubMed ID: 35238575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corona Exchange Dynamics on Carbon Nanotubes by Multiplexed Fluorescence Monitoring.
    Pinals RL; Yang D; Lui A; Cao W; Landry MP
    J Am Chem Soc; 2020 Jan; 142(3):1254-1264. PubMed ID: 31887029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions.
    McDonald TJ; Engtrakul C; Jones M; Rumbles G; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25339-46. PubMed ID: 17165980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube.
    Roxbury D; Jagota A; Mittal J
    J Am Chem Soc; 2011 Aug; 133(34):13545-50. PubMed ID: 21797248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes.
    Wu SJ; Schuergers N; Lin KH; Gillen AJ; Corminboeuf C; Boghossian AA
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37386-37395. PubMed ID: 30277379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characteristics of oligomeric DNA strands adsorbed onto single-walled carbon nanotubes.
    Roxbury D; Jagota A; Mittal J
    J Phys Chem B; 2013 Jan; 117(1):132-40. PubMed ID: 23199189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotherm, thermodynamic, kinetics, and adsorption mechanism studies of Ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube.
    Moradi O; Fakhri A; Adami S; Adami S
    J Colloid Interface Sci; 2013 Apr; 395():224-9. PubMed ID: 23261335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.