BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37646791)

  • 1. Comparison of 1.5 T and 3 T magnetic resonance angiography for detecting cerebral aneurysms using deep learning-based computer-assisted detection software.
    Tajima T; Akai H; Yasaka K; Kunimatsu A; Yoshioka N; Akahane M; Ohtomo K; Abe O; Kiryu S
    Neuroradiology; 2023 Oct; 65(10):1473-1482. PubMed ID: 37646791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Software Improves Clinicians' Detection Sensitivity of Aneurysms on Brain TOF-MRA.
    Sohn B; Park KY; Choi J; Koo JH; Han K; Joo B; Won SY; Cha J; Choi HS; Lee SK
    AJNR Am J Neuroradiol; 2021 Oct; 42(10):1769-1775. PubMed ID: 34385143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study.
    Li Y; Zhang H; Sun Y; Fan Q; Wang L; Ji C; HuiGu ; Chen B; Zhao S; Wang D; Yu P; Li J; Yang S; Zhang C; Wang X
    Int J Med Inform; 2024 Aug; 188():105487. PubMed ID: 38761459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of intracranial aneurysms using deep learning-based CAD system: usefulness of the scores of CNN's final layer for distinguishing between aneurysm and infundibular dilatation.
    Ishihara M; Shiiba M; Maruno H; Kato M; Ohmoto-Sekine Y; Antoine C; Ouchi Y
    Jpn J Radiol; 2023 Feb; 41(2):131-141. PubMed ID: 36173510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated unruptured cerebral aneurysms detection in TOF MR angiography images using dual-channel SE-3D UNet: a multi-center research.
    Chen G; Yifang B; Jiajun Z; Dongdong W; Zhiyong Z; Ruoyu D; Bin D; Sirong P; Daoying G; Meng C; Yakang D; Yuxin L
    Eur Radiol; 2023 May; 33(5):3532-3543. PubMed ID: 36725720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.
    Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O
    J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images.
    Qu J; Niu H; Li Y; Chen T; Peng F; Xia J; He X; Xu B; Chen X; Li R; Liu A; Zhang X; Li C
    Eur Radiol; 2024 May; 34(5):2838-2848. PubMed ID: 37843574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers.
    Faron A; Sichtermann T; Teichert N; Luetkens JA; Keulers A; Nikoubashman O; Freiherr J; Mpotsaris A; Wiesmann M
    Clin Neuroradiol; 2020 Sep; 30(3):591-598. PubMed ID: 31227844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study.
    Lehnen NC; Haase R; Schmeel FC; Vatter H; Dorn F; Radbruch A; Paech D
    AJNR Am J Neuroradiol; 2022 Dec; 43(12):1700-1705. PubMed ID: 36357154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint two-stage convolutional neural networks for intracranial aneurysms detection on 3D TOF-MRA.
    Zhou Y; Yang Y; Fang T; Jia S; Nie S; Ye X
    Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37607561
    [No Abstract]   [Full Text] [Related]  

  • 12. Added diagnostic values of three-dimensional high-resolution proton density-weighted magnetic resonance imaging for unruptured intracranial aneurysms in the circle-of-Willis: Comparison with time-of-flight magnetic resonance angiography.
    Yim Y; Jung SC; Kim JY; Kim SO; Kim BJ; Lee DH; Park W; Park JC; Ahn JS
    PLoS One; 2020; 15(12):e0243235. PubMed ID: 33270756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of an AI software on the diagnostic performance and reading time for the detection of cerebral aneurysms on time of flight MR-angiography.
    Lehnen NC; Schievelkamp AH; Gronemann C; Haase R; Krause I; Gansen M; Fleckenstein T; Dorn F; Radbruch A; Paech D
    Neuroradiology; 2024 Jul; 66(7):1153-1160. PubMed ID: 38619571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Learning Model with High Standalone Performance for Diagnosis of Unruptured Intracranial Aneurysm.
    Joo B; Choi HS; Ahn SS; Cha J; Won SY; Sohn B; Kim H; Han K; Kim HP; Choi JM; Lee SM; Kim TG; Lee SK
    Yonsei Med J; 2021 Nov; 62(11):1052-1061. PubMed ID: 34672139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net.
    Claux F; Baudouin M; Bogey C; Rouchaud A
    J Neuroradiol; 2023 Feb; 50(1):9-15. PubMed ID: 35307554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrepancy between MRA and DSA in identifying the shape of small intracranial aneurysms.
    Kwak Y; Son W; Kim YS; Park J; Kang DH
    J Neurosurg; 2020 Jul; 134(6):1887-1893. PubMed ID: 32707543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA.
    Sichtermann T; Faron A; Sijben R; Teichert N; Freiherr J; Wiesmann M
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):25-32. PubMed ID: 30573461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network.
    Chen G; Wei X; Lei H; Liqin Y; Yuxin L; Yakang D; Daoying G
    Biomed Eng Online; 2020 May; 19(1):38. PubMed ID: 32471439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: a study of 133 aneurysms.
    Okahara M; Kiyosue H; Yamashita M; Nagatomi H; Hata H; Saginoya T; Sagara Y; Mori H
    Stroke; 2002 Jul; 33(7):1803-8. PubMed ID: 12105357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms.
    Ueda D; Yamamoto A; Nishimori M; Shimono T; Doishita S; Shimazaki A; Katayama Y; Fukumoto S; Choppin A; Shimahara Y; Miki Y
    Radiology; 2019 Jan; 290(1):187-194. PubMed ID: 30351253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.