These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37646934)

  • 1. Investigating Pangenome Graphs Using Wheat Panache.
    Bayer PE; Edwards D
    Methods Mol Biol; 2023; 2703():23-29. PubMed ID: 37646934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheat Panache: A pangenome graph database representing presence-absence variation across sixteen bread wheat genomes.
    Bayer PE; Petereit J; Durant É; Monat C; Rouard M; Hu H; Chapman B; Li C; Cheng S; Batley J; Edwards D
    Plant Genome; 2022 Sep; 15(3):e20221. PubMed ID: 35644986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pangenome graphs in infectious disease: a comprehensive genetic variation analysis of
    Yang Z; Guarracino A; Biggs PJ; Black MA; Ismail N; Wold JR; Merriman TR; Prins P; Garrison E; de Ligt J
    Front Genet; 2023; 14():1225248. PubMed ID: 37636268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ODGI: understanding pangenome graphs.
    Guarracino A; Heumos S; Nahnsen S; Prins P; Garrison E
    Bioinformatics; 2022 Jun; 38(13):3319-3326. PubMed ID: 35552372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pangenome of hexaploid bread wheat.
    Montenegro JD; Golicz AA; Bayer PE; Hurgobin B; Lee H; Chan CK; Visendi P; Lai K; Doležel J; Batley J; Edwards D
    Plant J; 2017 Jun; 90(5):1007-1013. PubMed ID: 28231383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pangenomics in crop improvement-from coding structural variations to finding regulatory variants with pangenome graphs.
    Zanini SF; Bayer PE; Wells R; Snowdon RJ; Batley J; Varshney RK; Nguyen HT; Edwards D; Golicz AA
    Plant Genome; 2022 Mar; 15(1):e20177. PubMed ID: 34904403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unbiased pangenome graphs.
    Garrison E; Guarracino A
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36448683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WGT: Tools and algorithms for recognizing, visualizing, and generating Wheeler graphs.
    Chao KH; Chen PW; Seshia SA; Langmead B
    iScience; 2023 Aug; 26(8):107402. PubMed ID: 37575187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pangenome Graphs.
    Eizenga JM; Novak AM; Sibbesen JA; Heumos S; Ghaffaari A; Hickey G; Chang X; Seaman JD; Rounthwaite R; Ebler J; Rautiainen M; Garg S; Paten B; Marschall T; Sirén J; Garrison E
    Annu Rev Genomics Hum Genet; 2020 Aug; 21():139-162. PubMed ID: 32453966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The design and construction of reference pangenome graphs with minigraph.
    Li H; Feng X; Chu C
    Genome Biol; 2020 Oct; 21(1):265. PubMed ID: 33066802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are we there yet? Driving the road to evolutionary graph-pangenomics.
    Hübner S
    Curr Opin Plant Biol; 2022 Apr; 66():102195. PubMed ID: 35217472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pangenome graph construction from genome alignments with Minigraph-Cactus.
    Hickey G; Monlong J; Ebler J; Novak AM; Eizenga JM; Gao Y; ; Marschall T; Li H; Paten B
    Nat Biotechnol; 2024 Apr; 42(4):663-673. PubMed ID: 37165083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Panakeia - a universal tool for bacterial pangenome analysis.
    Beier S; Thomson NR
    BMC Genomics; 2022 Apr; 23(1):265. PubMed ID: 35382730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complete pedigree-based graph workflow for rare candidate variant analysis.
    Markello C; Huang C; Rodriguez A; Carroll A; Chang PC; Eizenga J; Markello T; Haussler D; Paten B
    Genome Res; 2022 May; 32(5):893-903. PubMed ID: 35483961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building pangenome graphs.
    Garrison E; Guarracino A; Heumos S; Villani F; Bao Z; Tattini L; Hagmann J; Vorbrugg S; Marco-Sola S; Kubica C; Ashbrook DG; Thorell K; Rusholme-Pilcher RL; Liti G; Rudbeck E; Nahnsen S; Yang Z; Mwaniki MN; Nobrega FL; Wu Y; Chen H; de Ligt J; Sudmant PH; Soranzo N; Colonna V; Williams RW; Prins P
    bioRxiv; 2024 Oct; ():. PubMed ID: 37066137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GrainGenes: a data-rich repository for small grains genetics and genomics.
    Yao E; Blake VC; Cooper L; Wight CP; Michel S; Cagirici HB; Lazo GR; Birkett CL; Waring DJ; Jannink JL; Holmes I; Waters AJ; Eickholt DP; Sen TZ
    Database (Oxford); 2022 May; 2022():. PubMed ID: 35616118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SnpHub: an easy-to-set-up web server framework for exploring large-scale genomic variation data in the post-genomic era with applications in wheat.
    Wang W; Wang Z; Li X; Ni Z; Hu Z; Xin M; Peng H; Yao Y; Sun Q; Guo W
    Gigascience; 2020 Jun; 9(6):. PubMed ID: 32501478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome.
    Plissonneau C; Hartmann FE; Croll D
    BMC Biol; 2018 Jan; 16(1):5. PubMed ID: 29325559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pangenome analysis pipeline provides insights into functional gene identification in rice.
    Wang J; Yang W; Zhang S; Hu H; Yuan Y; Dong J; Chen L; Ma Y; Yang T; Zhou L; Chen J; Liu B; Li C; Edwards D; Zhao J
    Genome Biol; 2023 Jan; 24(1):19. PubMed ID: 36703158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici.
    Badet T; Oggenfuss U; Abraham L; McDonald BA; Croll D
    BMC Biol; 2020 Feb; 18(1):12. PubMed ID: 32046716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.