BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37647161)

  • 1. Compaction of Calf Thymus DNA by a Potential One-Head-Two-Tail Surfactant: Properties of Nanomaterials and Biological Testing for Gene Delivery.
    Dyagala S; Paul M; Aswal VK; Biswas S; Saha SK
    ACS Appl Bio Mater; 2023 Sep; 6(9):3848-3862. PubMed ID: 37647161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Gemini Surfactants with Variable Spacers and SiO
    Halder S; Paul M; Dyagala S; Aggrawal R; Aswal VK; Biswas S; Saha SK
    ACS Appl Bio Mater; 2023 Jul; 6(7):2795-2815. PubMed ID: 37277159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of DNA compaction by negatively charged nanoparticles: effect of nanoparticle size and surfactant chain length.
    Rudiuk S; Yoshikawa K; Baigl D
    J Colloid Interface Sci; 2012 Feb; 368(1):372-7. PubMed ID: 22071517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of calf thymus DNA and glucose-based gemini cationic surfactants with different spacer length: A spectroscopy and DLS study.
    Gan C; Cheng R; Cai K; Wang X; Xie C; Xu T; Yuan C
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120606. PubMed ID: 34802935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Interaction of Silicon Dioxide Nanoparticles with Human Hemoglobin and Lymphocyte Cells by Biophysical, Computational, and Cellular Studies.
    Sabziparvar N; Saeedi Y; Nouri M; Najafi Bozorgi AS; Alizadeh E; Attar F; Akhtari K; Mousavi SE; Falahati M
    J Phys Chem B; 2018 Apr; 122(15):4278-4288. PubMed ID: 29537841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions with ctDNA of novel sugar-based gemini cationic surfactants.
    Cai K; Cheng R; Wang C; Xia Y; Xu T; Gan C
    Int J Biol Macromol; 2020 Aug; 156():805-811. PubMed ID: 32272121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticles and surfaces presenting antifungal, antibacterial and antiviral properties.
    Botequim D; Maia J; Lino MM; Lopes LM; Simões PN; Ilharco LM; Ferreira L
    Langmuir; 2012 May; 28(20):7646-56. PubMed ID: 22545667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of positively surface charged zinc oxide nanoparticles against bacterial pathogens.
    Kim I; Viswanathan K; Kasi G; Sadeghi K; Thanakkasaranee S; Seo J
    Microb Pathog; 2020 Dec; 149():104290. PubMed ID: 32492458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface coverage of didecyl dimethylammonium bromide on poly(lactide-co-glycolide) nanoparticles.
    Kuo YC; Yu HW
    Colloids Surf B Biointerfaces; 2011 May; 84(1):253-8. PubMed ID: 21288700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flow cytometric approach to study the mechanism of gene delivery to cells by gemini-lipid nanoparticles: an implication for cell membrane nanoporation.
    Gharagozloo M; Rafiee A; Chen DW; Foldvari M
    J Nanobiotechnology; 2015 Sep; 13():62. PubMed ID: 26415935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous aggregate transition in mixtures of a cationic gemini surfactant with a double-chain cationic surfactant.
    Tian M; Fan Y; Ji G; Wang Y
    Langmuir; 2012 Aug; 28(33):12005-14. PubMed ID: 22827887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of layer-by-layer films of electroactive hemoglobin and surfactant didodecyldimethylammonium bromide.
    Hu Y; Sun H; Hu N
    J Colloid Interface Sci; 2007 Oct; 314(1):131-40. PubMed ID: 17585929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compaction of DNA by gemini surfactants: effects of surfactant architecture.
    Karlsson L; van Eijk MC; Söderman O
    J Colloid Interface Sci; 2002 Aug; 252(2):290-6. PubMed ID: 16290792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphipathic silica nanoparticles induce cytotoxicity through oxidative stress mediated and p53 dependent apoptosis pathway in human liver cell line HL-7702 and rat liver cell line BRL-3A.
    Zuo D; Duan Z; Jia Y; Chu T; He Q; Yuan J; Dai W; Li Z; Xing L; Wu Y
    Colloids Surf B Biointerfaces; 2016 Sep; 145():232-240. PubMed ID: 27187187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible DNA compaction induced by partial intercalation of 16-Ph-16 gemini surfactants: evidence of triple helix formation.
    Grueso E; Roldan E; Perez-Tejeda P; Kuliszewska E; Molero B; Brecker L; Giráldez-Pérez RM
    Phys Chem Chem Phys; 2018 Oct; 20(38):24902-24914. PubMed ID: 30234871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gelucire-stabilized nanoparticles as a potential DNA delivery system.
    Oyewumi MO; Wehrung D; Sadana P
    Pharm Dev Technol; 2016 Sep; 21(6):647-54. PubMed ID: 25915179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized Surface-Charged SiO
    Tada-Oikawa S; Eguchi M; Yasuda M; Izuoka K; Ikegami A; Vranic S; Boland S; Tran L; Ichihara G; Ichihara S
    Chem Res Toxicol; 2020 May; 33(5):1226-1236. PubMed ID: 32319286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles.
    Singh J; Michel D; Chitanda JM; Verrall RE; Badea I
    J Nanobiotechnology; 2012 Feb; 10():7. PubMed ID: 22296763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural behaviour of mixed cationic surfactant micelles: a small-angle neutron scattering study.
    Bergström LM; Garamus VM
    J Colloid Interface Sci; 2012 Sep; 381(1):89-99. PubMed ID: 22683217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of didodecyldimethylammonium bromide-based nanoassemblies for gene delivery.
    Jin Y; Wang S; Tong L; Du L
    Colloids Surf B Biointerfaces; 2015 Feb; 126():257-64. PubMed ID: 25576809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.