These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37647399)

  • 1. Optimal sparsity allows reliable system-aware restoration of fluorescence microscopy images.
    Mandracchia B; Liu W; Hua X; Forghani P; Lee S; Hou J; Nie S; Xu C; Jia S
    Sci Adv; 2023 Sep; 9(35):eadg9245. PubMed ID: 37647399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Content-aware image restoration for electron microscopy.
    Buchholz TO; Krull A; Shahidi R; Pigino G; Jékely G; Jug F
    Methods Cell Biol; 2019; 152():277-289. PubMed ID: 31326025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence microscopy datasets for training deep neural networks.
    Hagen GM; Bendesky J; Machado R; Nguyen TA; Kumar T; Ventura J
    Gigascience; 2021 May; 10(5):. PubMed ID: 33954794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences.
    Kefer P; Iqbal F; Locatelli M; Lawrimore J; Zhang M; Bloom K; Bonin K; Vidi PA; Liu J
    Mol Biol Cell; 2021 Apr; 32(9):903-914. PubMed ID: 33502895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration.
    Forsgren E; Edlund C; Oliver M; Barnes K; Sjögren R; Jackson TR
    PLoS One; 2022; 17(5):e0264241. PubMed ID: 35588399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous recovery of both bright and dim structures from noisy fluorescence microscopy images using a modified TV constraint.
    Xiao C; Smith ZJ; Chu K
    J Microsc; 2019 Jul; 275(1):24-35. PubMed ID: 31026068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative fluorescence microscopy and image deconvolution.
    Swedlow JR
    Methods Cell Biol; 2013; 114():407-26. PubMed ID: 23931516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and accurate sCMOS noise correction for fluorescence microscopy.
    Mandracchia B; Hua X; Guo C; Son J; Urner T; Jia S
    Nat Commun; 2020 Jan; 11(1):94. PubMed ID: 31901080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing high fidelity digital rock images using deep convolutional neural networks.
    Bizhani M; Ardakani OH; Little E
    Sci Rep; 2022 Mar; 12(1):4264. PubMed ID: 35277546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.
    Mela CA; Liu Y
    BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepHCS
    Lee G; Oh JW; Her NG; Jeong WK
    Med Image Anal; 2021 May; 70():101995. PubMed ID: 33640720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blind microscopy image denoising with a deep residual and multiscale encoder/decoder network.
    Gil Zuluaga FH; Bardozzo F; Rios Patino JI; Tagliaferri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3483-3486. PubMed ID: 34891990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Improvement of TEM Images with Low-Dose Electrons by Deep Learning.
    Katsuno H; Kimura Y; Yamazaki T; Takigawa I
    Microsc Microanal; 2022 Feb; 28(1):138-144. PubMed ID: 35177140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscope alignment using real-time Imaging FCS.
    Aik DYK; Wohland T
    Biophys J; 2022 Jul; 121(14):2663-2670. PubMed ID: 35672950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phasor-based approach to improve optical sectioning in any confocal microscope with a tunable pinhole.
    D'Amico M; Di Franco E; Cerutti E; Barresi V; Condorelli D; Diaspro A; Lanzanò L
    Microsc Res Tech; 2022 Sep; 85(9):3207-3216. PubMed ID: 35686877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images.
    Yang S; Lee BU
    PLoS One; 2015; 10(9):e0136964. PubMed ID: 26352138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization-based super-resolution microscopy with an sCMOS camera part II: experimental methodology for comparing sCMOS with EMCCD cameras.
    Long F; Zeng S; Huang ZL
    Opt Express; 2012 Jul; 20(16):17741-59. PubMed ID: 23038326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Dependent Image Restoration of Low-SNR Live-Cell Ca
    Woelk LM; Kannabiran SA; Brock VJ; Gee CE; Lohr C; Guse AH; Diercks BP; Werner R
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametric blind deconvolution for confocal laser scanning microscopy.
    Pankajakshan P; Zhang B; Blanc-Feraud L; Kam Z; Olivo-Marin JC; Zerubia J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6532-5. PubMed ID: 18003522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.