These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37647510)
1. Impact of Spatial Inhomogeneity on Excitation Energy Transport in the Fenna-Matthews-Olson Complex. Bose A; Walters PL J Phys Chem B; 2023 Sep; 127(36):7663-7673. PubMed ID: 37647510 [TBL] [Abstract][Full Text] [Related]
2. Role of Pigment-Protein Coupling in the Energy Transport Dynamics in the Fenna-Matthews-Olson Complex. Cui X; Yan Y; Wei J J Phys Chem B; 2021 Nov; 125(43):11884-11892. PubMed ID: 34669415 [TBL] [Abstract][Full Text] [Related]
3. On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes. Kell A; Khmelnitskiy AY; Reinot T; Jankowiak R J R Soc Interface; 2019 Feb; 16(151):20180882. PubMed ID: 30958204 [TBL] [Abstract][Full Text] [Related]
4. Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex. Baker LA; Habershon S J Chem Phys; 2015 Sep; 143(10):105101. PubMed ID: 26374060 [TBL] [Abstract][Full Text] [Related]
5. Quantification of non-Markovian effects in the Fenna-Matthews-Olson complex. Mujica-Martinez CA; Nalbach P; Thorwart M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062719. PubMed ID: 24483498 [TBL] [Abstract][Full Text] [Related]
6. Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex. Hu Z; Liu Z; Sun X J Phys Chem B; 2022 Nov; 126(45):9271-9287. PubMed ID: 36327977 [TBL] [Abstract][Full Text] [Related]
7. Different Types of Vibrations Interacting with Electronic Excitations in Phycoerythrin 545 and Fenna-Matthews-Olson Antenna Systems. Aghtar M; Strümpfer J; Olbrich C; Schulten K; Kleinekathöfer U J Phys Chem Lett; 2014 Sep; 5(18):3131-7. PubMed ID: 26276324 [TBL] [Abstract][Full Text] [Related]
8. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment. Tao MJ; Ai Q; Deng FG; Cheng YC Sci Rep; 2016 Jun; 6():27535. PubMed ID: 27277702 [TBL] [Abstract][Full Text] [Related]
9. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex. Kim Y; Morozov D; Stadnytskyi V; Savikhin S; Slipchenko LV J Phys Chem Lett; 2020 Mar; 11(5):1636-1643. PubMed ID: 32013435 [TBL] [Abstract][Full Text] [Related]
10. A stochastic surrogate Hamiltonian approach of coherent and incoherent exciton transport in the Fenna-Matthews-Olson complex. Renaud N; Ratner MA; Mujica V J Chem Phys; 2011 Aug; 135(7):075102. PubMed ID: 21861585 [TBL] [Abstract][Full Text] [Related]
11. Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II. Irgen-Gioro S; Gururangan K; Saer RG; Blankenship RE; Harel E Chem Sci; 2019 Dec; 10(45):10503-10509. PubMed ID: 32055373 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical Equations of Motion for Quantum Chemical Dynamics: Recent Methodology Developments and Applications. Bai S; Zhang S; Huang C; Shi Q Acc Chem Res; 2024 Nov; 57(21):3151-3160. PubMed ID: 39381954 [TBL] [Abstract][Full Text] [Related]
14. Excitation energy transfer pathways in light-harvesting proteins: Modeling with PyFREC. Kholod Y; DeFilippo M; Reed B; Valdez D; Gillan G; Kosenkov D J Comput Chem; 2018 Mar; 39(8):438-449. PubMed ID: 29243269 [TBL] [Abstract][Full Text] [Related]
15. Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues. Saer R; Orf GS; Lu X; Zhang H; Cuneo MJ; Myles DAA; Blankenship RE Biochim Biophys Acta; 2016 Sep; 1857(9):1455-1463. PubMed ID: 27114180 [TBL] [Abstract][Full Text] [Related]
16. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control. Fransted KA; Caram JR; Hayes D; Engel GS J Chem Phys; 2012 Sep; 137(12):125101. PubMed ID: 23020349 [TBL] [Abstract][Full Text] [Related]
17. On the Controversial Nature of the 825 nm Exciton Band in the FMO Protein Complex. Kell A; Acharya K; Zazubovich V; Jankowiak R J Phys Chem Lett; 2014 Apr; 5(8):1450-6. PubMed ID: 26269993 [TBL] [Abstract][Full Text] [Related]
18. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397 [TBL] [Abstract][Full Text] [Related]
19. Theoretical Study on the Effect of Environment on Excitation Energy Transfer in Photosynthetic Light-Harvesting Systems. Cui X; Yan Y; Wei J J Phys Chem B; 2020 Mar; 124(12):2354-2362. PubMed ID: 32130013 [TBL] [Abstract][Full Text] [Related]
20. Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna-Matthews-Olson Trimer from Chlorobaculum tepidum. Kell A; Blankenship RE; Jankowiak R J Phys Chem A; 2016 Aug; 120(31):6146-54. PubMed ID: 27438068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]