BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 37647583)

  • 21. Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p.
    van der Wel PC; Lewandowski JR; Griffin RG
    J Am Chem Soc; 2007 Apr; 129(16):5117-30. PubMed ID: 17397156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parallel in-register intermolecular β-sheet architectures for prion-seeded prion protein (PrP) amyloids.
    Groveman BR; Dolan MA; Taubner LM; Kraus A; Wickner RB; Caughey B
    J Biol Chem; 2014 Aug; 289(35):24129-42. PubMed ID: 25028516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM.
    Suhre MH; Hess S; Golser AV; Scheibel T
    J Inorg Biochem; 2009 Dec; 103(12):1711-20. PubMed ID: 19853305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-Seeding Assay in the Investigation of the Amyloid Core of Prion Fibrils.
    Chu BK; Lin YS; Shen HC; Chen RP
    Methods Mol Biol; 2023; 2551():633-647. PubMed ID: 36310229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro.
    Tagliavini F; Prelli F; Verga L; Giaccone G; Sarma R; Gorevic P; Ghetti B; Passerini F; Ghibaudi E; Forloni G
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9678-82. PubMed ID: 8105481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Amyloid Cores in Prion Domains.
    Sant'Anna R; Fernández MR; Batlle C; Navarro S; de Groot NS; Serpell L; Ventura S
    Sci Rep; 2016 Sep; 6():34274. PubMed ID: 27686217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Critical region for amyloid fibril formation of mouse prion protein: unusual amyloidogenic properties of the helix 2 peptide.
    Yamaguchi K; Matsumoto T; Kuwata K
    Biochemistry; 2008 Dec; 47(50):13242-51. PubMed ID: 19053276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structures of amyloid fibrils formed by the prion protein derived peptides PrP(244-249) and PrP(245-250).
    Yau J; Sharpe S
    J Struct Biol; 2012 Nov; 180(2):290-302. PubMed ID: 22929126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils.
    Measey TJ; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Hunt for Ancient Prions: Archaeal Prion-Like Domains Form Amyloid-Based Epigenetic Elements.
    Zajkowski T; Lee MD; Mondal SS; Carbajal A; Dec R; Brennock PD; Piast RW; Snyder JE; Bense NB; Dzwolak W; Jarosz DF; Rothschild LJ
    Mol Biol Evol; 2021 May; 38(5):2088-2103. PubMed ID: 33480998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dichotomous versus palm-type mechanisms of lateral assembly of amyloid fibrils.
    Makarava N; Bocharova OV; Salnikov VV; Breydo L; Anderson M; Baskakov IV
    Protein Sci; 2006 Jun; 15(6):1334-41. PubMed ID: 16731968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis.
    Lakshmanan A; Cheong DW; Accardo A; Di Fabrizio E; Riekel C; Hauser CA
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):519-24. PubMed ID: 23267112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural characterization and biological properties of the amyloidogenic elastin-like peptide (VGGVG)3.
    Moscarelli P; Boraldi F; Bochicchio B; Pepe A; Salvi AM; Quaglino D
    Matrix Biol; 2014 Jun; 36():15-27. PubMed ID: 24686253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting the aggregation propensity of prion sequences.
    Espargaró A; Busquets MA; Estelrich J; Sabate R
    Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformation-Specific Association of Prion Protein Amyloid Aggregates with Tau Protein Monomers.
    Ziaunys M; Mikalauskaite K; Krasauskas L; Smirnovas V
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Entropic Bristles Tune the Seeding Efficiency of Prion-Nucleating Fragments.
    Michiels E; Liu S; Gallardo R; Louros N; Mathelié-Guinlet M; Dufrêne Y; Schymkowitz J; Vorberg I; Rousseau F
    Cell Rep; 2020 Feb; 30(8):2834-2845.e3. PubMed ID: 32101755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires.
    Reddy G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21459-64. PubMed ID: 21098298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanozymes with versatile redox capabilities inspired in metalloenzymes.
    López-Domene R; Kumar K; Barcelon JE; Guedes G; Beloqui A; Cortajarena AL
    Nanoscale; 2023 Nov; 15(42):16959-16966. PubMed ID: 37812064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.