BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 37647583)

  • 41. Annealing prion protein amyloid fibrils at high temperature results in extension of a proteinase K-resistant core.
    Bocharova OV; Makarava N; Breydo L; Anderson M; Salnikov VV; Baskakov IV
    J Biol Chem; 2006 Jan; 281(4):2373-9. PubMed ID: 16314415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ATP modulates self-perpetuating conformational conversion generating structurally distinct yeast prion amyloids that limit autocatalytic amplification.
    Mahapatra S; Sarbahi A; Punia N; Joshi A; Avni A; Walimbe A; Mukhopadhyay S
    J Biol Chem; 2023 May; 299(5):104654. PubMed ID: 36990219
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular structure of amyloid fibrils formed by residues 127 to 147 of the human prion protein.
    Lin NS; Chao JC; Cheng HM; Chou FC; Chang CF; Chen YR; Chang YJ; Huang SJ; Chan JC
    Chemistry; 2010 May; 16(18):5492-9. PubMed ID: 20358555
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch.
    Fei L; Perrett S
    J Biol Chem; 2009 Apr; 284(17):11134-41. PubMed ID: 19258323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of a Steric Zipper Motif in the Amyloidogenic Core of Human Cystatin C and Its Use for the Design of Self-Assembling Peptides.
    Iłowska E; Barciszewski J; Jaskólski M; Moliński A; Kozak M; Szymańska A
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628610
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amyloid fibrils nucleated and organized by DNA origami constructions.
    Udomprasert A; Bongiovanni MN; Sha R; Sherman WB; Wang T; Arora PS; Canary JW; Gras SL; Seeman NC
    Nat Nanotechnol; 2014 Jul; 9(7):537-41. PubMed ID: 24880222
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prion domains as a driving force for the assembly of functional nanomaterials.
    Wang W; Ventura S
    Prion; 2020 Dec; 14(1):170-179. PubMed ID: 32597308
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure.
    Wan W; Stöhr J; Kendall A; Stubbs G
    Prion; 2015; 9(5):333-8. PubMed ID: 26325658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-β supramolecular networks.
    Hiew SH; Guerette PA; Zvarec OJ; Phillips M; Zhou F; Su H; Pervushin K; Orner BP; Miserez A
    Acta Biomater; 2016 Dec; 46():41-54. PubMed ID: 27693688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prion and non-prion amyloids of the HET-s prion forming domain.
    Sabaté R; Baxa U; Benkemoun L; Sánchez de Groot N; Coulary-Salin B; Maddelein ML; Malato L; Ventura S; Steven AC; Saupe SJ
    J Mol Biol; 2007 Jul; 370(4):768-83. PubMed ID: 17532341
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Location of the cross-β structure in prion fibrils: A search by seeding and electron spin resonance spectroscopy.
    Chu BK; Tsai RF; Hung CL; Kuo YH; Chen EH; Chiang YW; Chan SI; Chen RP
    Protein Sci; 2022 Jun; 31(6):e4326. PubMed ID: 35634767
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amyloid cores in prion domains: Key regulators for prion conformational conversion.
    Fernández MR; Batlle C; Gil-García M; Ventura S
    Prion; 2017 Jan; 11(1):31-39. PubMed ID: 28281928
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The formation of Escherichia coli curli amyloid fibrils is mediated by prion-like peptide repeats.
    Cherny I; Rockah L; Levy-Nissenbaum O; Gophna U; Ron EZ; Gazit E
    J Mol Biol; 2005 Sep; 352(2):245-52. PubMed ID: 16083908
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic Amyloids as Novel Synthetic Hydrolases.
    Duran-Meza E; Diaz-Espinoza R
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502074
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein.
    Lee SW; Mou Y; Lin SY; Chou FC; Tseng WH; Chen CH; Lu CY; Yu SS; Chan JC
    J Mol Biol; 2008 May; 378(5):1142-54. PubMed ID: 18423487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The native-like conformation of Ure2p in fibrils assembled under physiologically relevant conditions switches to an amyloid-like conformation upon heat-treatment of the fibrils.
    Bousset L; Briki F; Doucet J; Melki R
    J Struct Biol; 2003 Feb; 141(2):132-42. PubMed ID: 12615539
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hierarchical organization in the amyloid core of yeast prion protein Ure2.
    Ngo S; Gu L; Guo Z
    J Biol Chem; 2011 Aug; 286(34):29691-9. PubMed ID: 21730048
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cofactors-like peptide self-assembly exhibiting the enhanced catalytic activity in the peptide-metal nanocatalysts.
    Sun T; Feng Y; Peng J; Hao Y; Zhang L; Liu L
    J Colloid Interface Sci; 2022 Jul; 617():511-524. PubMed ID: 35299125
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atomistic insights into the structure of heptapeptide nanofibers.
    Peccati F; Sodupe M
    J Chem Phys; 2021 Aug; 155(5):055101. PubMed ID: 34364337
    [TBL] [Abstract][Full Text] [Related]  

  • 60. X-ray diffraction and far-UV CD studies of filaments formed by a leucine-rich repeat peptide: structural similarity to the amyloid fibrils of prions and Alzheimer's disease beta-protein.
    Symmons MF; Buchanan SG; Clarke DT; Jones G; Gay NJ
    FEBS Lett; 1997 Jul; 412(2):397-403. PubMed ID: 9256259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.