These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37647583)

  • 61. Amyloidogenic domains, prions and structural inheritance: rudiments of early life or recent acquisition?
    Chernoff YO
    Curr Opin Chem Biol; 2004 Dec; 8(6):665-71. PubMed ID: 15556413
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Protein-solvent interfaces in human Y145Stop prion protein amyloid fibrils probed by paramagnetic solid-state NMR spectroscopy.
    Aucoin D; Xia Y; Theint T; Nadaud PS; Surewicz K; Surewicz WK; Jaroniec CP
    J Struct Biol; 2019 Apr; 206(1):36-42. PubMed ID: 29679649
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Catalytically Active Amyloids as Future Bionanomaterials.
    Diaz-Espinoza R
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364578
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Supramolecular assemblies of histidine-containing peptides with switchable hydrolase and peroxidase activities through Cu(II) binding and co-assembling.
    Zhang Y; Tian X; Li X
    J Mater Chem B; 2022 May; 10(19):3716-3722. PubMed ID: 35451448
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dynamics of Zn(II) binding as a key feature in the formation of amyloid fibrils by Aβ11-28.
    Alies B; Solari PL; Hureau C; Faller P
    Inorg Chem; 2012 Jan; 51(1):701-8. PubMed ID: 22148916
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Branched chain mechanism of polymerization and ultrastructure of prion protein amyloid fibrils.
    Baskakov IV
    FEBS J; 2007 Aug; 274(15):3756-65. PubMed ID: 17617227
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Principles Governing Catalytic Activity of Self-Assembled Short Peptides.
    Song R; Wu X; Xue B; Yang Y; Huang W; Zeng G; Wang J; Li W; Cao Y; Wang W; Lu J; Dong H
    J Am Chem Soc; 2019 Jan; 141(1):223-231. PubMed ID: 30562022
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The seeding barrier between human and Syrian hamster prion protein amyloid fibrils is determined by β2-α2 loop sequence elements.
    Šulskis D; Šneiderienė G; Žiaunys M; Smirnovas V
    Int J Biol Macromol; 2023 May; 238():124038. PubMed ID: 36921824
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rationally designed mutations convert de novo amyloid-like fibrils into monomeric beta-sheet proteins.
    Wang W; Hecht MH
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2760-5. PubMed ID: 11880628
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Yeast Prions Compared to Functional Prions and Amyloids.
    Wickner RB; Edskes HK; Son M; Bezsonov EE; DeWilde M; Ducatez M
    J Mol Biol; 2018 Oct; 430(20):3707-3719. PubMed ID: 29698650
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preparation and Screening of Catalytic Amyloid Assemblies.
    Lengyel Z; Rufo CM; Korendovych IV
    Methods Mol Biol; 2018; 1777():261-270. PubMed ID: 29744841
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantitative analysis of spin exchange interactions to identify β strand and turn regions in Ure2 prion domain fibrils with site-directed spin labeling.
    Ngo S; Chiang V; Guo Z
    J Struct Biol; 2012 Nov; 180(2):374-81. PubMed ID: 22967940
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structural basis of infectious and non-infectious amyloids.
    Baxa U
    Curr Alzheimer Res; 2008 Jun; 5(3):308-18. PubMed ID: 18537545
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Zinc-binding structure of a catalytic amyloid from solid-state NMR.
    Lee M; Wang T; Makhlynets OV; Wu Y; Polizzi NF; Wu H; Gosavi PM; Stöhr J; Korendovych IV; DeGrado WF; Hong M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6191-6196. PubMed ID: 28566494
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Functional Reciprocity of Amyloids and Antimicrobial Peptides: Rethinking the Role of Supramolecular Assembly in Host Defense, Immune Activation, and Inflammation.
    Lee EY; Srinivasan Y; de Anda J; Nicastro LK; Tükel Ç; Wong GCL
    Front Immunol; 2020; 11():1629. PubMed ID: 32849553
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Heterogeneous amyloid-formed ion channels as a common cytotoxic mechanism: implications for therapeutic strategies against amyloidosis.
    Kourie JI; Culverson AL; Farrelly PV; Henry CL; Laohachai KN
    Cell Biochem Biophys; 2002; 36(2-3):191-207. PubMed ID: 12139405
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Artificial metalloenzymes constructed from hierarchically-assembled proteins.
    Ueno T; Tabe H; Tanaka Y
    Chem Asian J; 2013 Aug; 8(8):1646-60. PubMed ID: 23704077
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of multiple amyloidogenic sequences in laminin-1.
    Kasai S; Urushibata S; Hozumi K; Yokoyama F; Ichikawa N; Kadoya Y; Nishi N; Watanabe N; Yamada Y; Nomizu M
    Biochemistry; 2007 Apr; 46(13):3966-74. PubMed ID: 17348688
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young's moduli.
    Lamour G; Yip CK; Li H; Gsponer J
    ACS Nano; 2014 Apr; 8(4):3851-61. PubMed ID: 24588725
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Amyloid-based nanosensors and nanodevices.
    Hauser CA; Maurer-Stroh S; Martins IC
    Chem Soc Rev; 2014 Aug; 43(15):5326-45. PubMed ID: 24781248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.